On the relation between the rigidity of order $k>3$ and analytic nonformability of surfaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995), pp. 456-462.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved, that if every $C^1$-smooth $1$ order infinitesimal deformation of the regular surface of $C^1$-class can be extended to the $(k-1)$ order infinitesimal deformation ($k>3$), then the $k$ order rigidity of this surface implies its analytic nonbending.
@article{JMAG_1995_2_a15,
     author = {N. G. Perlova},
     title = {On the relation between the rigidity of order $k>3$ and analytic nonformability of surfaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {456--462},
     publisher = {mathdoc},
     volume = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1995_2_a15/}
}
TY  - JOUR
AU  - N. G. Perlova
TI  - On the relation between the rigidity of order $k>3$ and analytic nonformability of surfaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1995
SP  - 456
EP  - 462
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1995_2_a15/
LA  - ru
ID  - JMAG_1995_2_a15
ER  - 
%0 Journal Article
%A N. G. Perlova
%T On the relation between the rigidity of order $k>3$ and analytic nonformability of surfaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1995
%P 456-462
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1995_2_a15/
%G ru
%F JMAG_1995_2_a15
N. G. Perlova. On the relation between the rigidity of order $k>3$ and analytic nonformability of surfaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995), pp. 456-462. http://geodesic.mathdoc.fr/item/JMAG_1995_2_a15/