Analytic and asymptotic properties of multivariate Linnik's distribution
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995), pp. 436-455.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with properties of $k$-variate ($k>2$) Linnik's distribution defined by the characteristic function $$\varphi_{\alpha k}(t)=1/(1+|t|^\alpha),\quad0\alpha2,\quad t\in\mathrm R^k,$$ where $|t|$ denotes Euclidean norm of vector $t\in\mathrm R^k$. This distribution is absolutely continuous with respect to the Lebesgue measure in $R^k$. Expansions of the density of the distribution into asymptotic and convergent series in powers of $|t|$, $|t|^\alpha$ are obtained. The forms of these expansions depend substantially on the arithmetical nature of the parameter $\alpha$.
@article{JMAG_1995_2_a14,
     author = {I. V. Ostrovskii},
     title = {Analytic and asymptotic properties of multivariate {Linnik's} distribution},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {436--455},
     publisher = {mathdoc},
     volume = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1995_2_a14/}
}
TY  - JOUR
AU  - I. V. Ostrovskii
TI  - Analytic and asymptotic properties of multivariate Linnik's distribution
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1995
SP  - 436
EP  - 455
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1995_2_a14/
LA  - en
ID  - JMAG_1995_2_a14
ER  - 
%0 Journal Article
%A I. V. Ostrovskii
%T Analytic and asymptotic properties of multivariate Linnik's distribution
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1995
%P 436-455
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1995_2_a14/
%G en
%F JMAG_1995_2_a14
I. V. Ostrovskii. Analytic and asymptotic properties of multivariate Linnik's distribution. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995), pp. 436-455. http://geodesic.mathdoc.fr/item/JMAG_1995_2_a14/