Quantum cohomology of complete intersections
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995), pp. 384-398.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quantum cohomology algebra of a projective manifold $X$ is the cohomology $H^*(X,\mathbf Q)$ endowed with a different algebra structure, which takes into account the geometry of rational curves in $X$. We show that this algebra takes a remarkably simple form for complete intersections when the dimension is large enough with respect to the degree. As a consequence we get a number of enumerative formulas relating lines, conies and twisted cubics on $X$.
@article{JMAG_1995_2_a11,
     author = {Arnaud Beauville},
     title = {Quantum cohomology of complete intersections},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {384--398},
     publisher = {mathdoc},
     volume = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1995_2_a11/}
}
TY  - JOUR
AU  - Arnaud Beauville
TI  - Quantum cohomology of complete intersections
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1995
SP  - 384
EP  - 398
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1995_2_a11/
LA  - en
ID  - JMAG_1995_2_a11
ER  - 
%0 Journal Article
%A Arnaud Beauville
%T Quantum cohomology of complete intersections
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1995
%P 384-398
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1995_2_a11/
%G en
%F JMAG_1995_2_a11
Arnaud Beauville. Quantum cohomology of complete intersections. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995), pp. 384-398. http://geodesic.mathdoc.fr/item/JMAG_1995_2_a11/