On toroidal submanifolds of constant negative curvature
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995), pp. 275-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier M. L. Rabelo and K. Tenenblat have introduced the notion of toroidal submanifolds generated by some curve $\alpha$ and they have constructed immersions of domains of the $n$-dimensional Lobachevsky space $L^n$ in $E^{2n-1}$ as toroidal submanifolds. Here these submanifolds are reconstructed by a simply way, and in the case $n=3$ the influence of the torsion $k$ of the curve $\alpha$ on the geometry of the submanifolds $M^3\subset E^5$ is investigated. Here the torsion appears in the coefficient of torsion of the special normal basis of $M^3$. The Grassmann image of its has been constructed.
@article{JMAG_1995_2_a0,
     author = {Yu. A. Aminov and M. L. Rabelo},
     title = {On toroidal submanifolds of constant negative curvature},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {275--283},
     publisher = {mathdoc},
     volume = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1995_2_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
AU  - M. L. Rabelo
TI  - On toroidal submanifolds of constant negative curvature
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1995
SP  - 275
EP  - 283
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JMAG_1995_2_a0/
LA  - en
ID  - JMAG_1995_2_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%A M. L. Rabelo
%T On toroidal submanifolds of constant negative curvature
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1995
%P 275-283
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JMAG_1995_2_a0/
%G en
%F JMAG_1995_2_a0
Yu. A. Aminov; M. L. Rabelo. On toroidal submanifolds of constant negative curvature. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995), pp. 275-283. http://geodesic.mathdoc.fr/item/JMAG_1995_2_a0/