Restrictions des s�ries discr�tes de certains groupes r�solubles
Journal of Lie theory, Tome 24 (2014) no. 3, pp. 865-887
Voir la notice de l'article provenant de la source Heldermann Verlag
The study of restrictions of unitary irreducible representations of a Lie group $G$ to its closed subgroups was successfully made by Corwin-Greenleaf for the nilpotent case, Lipsman for the completely solvable case and Fujiwara for the exponential case. However, even if the orbit method describes a large set of representations in $\widehat G$, the study of these restrictions remains a very difficult problem in the general case. In this work, we study the restriction of square integrable representations modulo the center of a solvable connected group, semi-direct product of a torus by a Heisenberg group to its algebraic connected subgroups.
Classification :
06B15
Mots-clés : Discrete series, representations, restriction, multiplicities
Mots-clés : Discrete series, representations, restriction, multiplicities
@article{JLT_2014_24_3_JLT_2014_24_3_a12,
author = {S. Kouki },
title = {Restrictions des s�ries discr�tes de certains groupes r�solubles},
journal = {Journal of Lie theory},
pages = {865--887},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a12/}
}
S. Kouki . Restrictions des s�ries discr�tes de certains groupes r�solubles. Journal of Lie theory, Tome 24 (2014) no. 3, pp. 865-887. http://geodesic.mathdoc.fr/item/JLT_2014_24_3_JLT_2014_24_3_a12/