An Imprimitivity Theorem for Representations of a Semi-Direct Product Hypergroup
Journal of Lie theory, Tome 24 (2014) no. 1, pp. 159-178.

Voir la notice de l'article provenant de la source Heldermann Verlag

The purpose of the present paper is to establish an imprimitivity theorem for representations of a semi-direct product hypergroup $K = H \rtimes_\beta G$ defined by a smooth action $\beta$ of a locally compact group $G$ on a hypergroup $H$. The proof of the theorem relies on a smooth irreducible absorbing action $\alpha$ of $K$ on a locally compact space $X$ and on an imprimitivity condition for the triplet $(K, C_0(X), \alpha)$.
Classification : 22D30, 22F50, 20N20, 43A62
Mots-clés : Induced representation, imprimitivity theorem, hypergroup
@article{JLT_2014_24_1_JLT_2014_24_1_a7,
     author = {H. Heyer and S. Kawakami },
     title = {An {Imprimitivity} {Theorem} for {Representations} of a {Semi-Direct} {Product} {Hypergroup}},
     journal = {Journal of Lie theory},
     pages = {159--178},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a7/}
}
TY  - JOUR
AU  - H. Heyer
AU  - S. Kawakami 
TI  - An Imprimitivity Theorem for Representations of a Semi-Direct Product Hypergroup
JO  - Journal of Lie theory
PY  - 2014
SP  - 159
EP  - 178
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a7/
ID  - JLT_2014_24_1_JLT_2014_24_1_a7
ER  - 
%0 Journal Article
%A H. Heyer
%A S. Kawakami 
%T An Imprimitivity Theorem for Representations of a Semi-Direct Product Hypergroup
%J Journal of Lie theory
%D 2014
%P 159-178
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a7/
%F JLT_2014_24_1_JLT_2014_24_1_a7
H. Heyer; S. Kawakami . An Imprimitivity Theorem for Representations of a Semi-Direct Product Hypergroup. Journal of Lie theory, Tome 24 (2014) no. 1, pp. 159-178. http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a7/