An Imprimitivity Theorem for Representations of a Semi-Direct Product Hypergroup
Journal of Lie theory, Tome 24 (2014) no. 1, pp. 159-178
Cet article a éte moissonné depuis la source Heldermann Verlag
The purpose of the present paper is to establish an imprimitivity theorem for representations of a semi-direct product hypergroup $K = H \rtimes_\beta G$ defined by a smooth action $\beta$ of a locally compact group $G$ on a hypergroup $H$. The proof of the theorem relies on a smooth irreducible absorbing action $\alpha$ of $K$ on a locally compact space $X$ and on an imprimitivity condition for the triplet $(K, C_0(X), \alpha)$.
Classification :
22D30, 22F50, 20N20, 43A62
Mots-clés : Induced representation, imprimitivity theorem, hypergroup
Mots-clés : Induced representation, imprimitivity theorem, hypergroup
@article{JLT_2014_24_1_JLT_2014_24_1_a7,
author = {H. Heyer and S. Kawakami },
title = {An {Imprimitivity} {Theorem} for {Representations} of a {Semi-Direct} {Product} {Hypergroup}},
journal = {Journal of Lie theory},
pages = {159--178},
year = {2014},
volume = {24},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a7/}
}
TY - JOUR AU - H. Heyer AU - S. Kawakami TI - An Imprimitivity Theorem for Representations of a Semi-Direct Product Hypergroup JO - Journal of Lie theory PY - 2014 SP - 159 EP - 178 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a7/ ID - JLT_2014_24_1_JLT_2014_24_1_a7 ER -
H. Heyer; S. Kawakami . An Imprimitivity Theorem for Representations of a Semi-Direct Product Hypergroup. Journal of Lie theory, Tome 24 (2014) no. 1, pp. 159-178. http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a7/