8-Dimensional Compact Planes with an Automorphism Group which has a Normal Vector Subgroup
Journal of Lie theory, Tome 24 (2014) no. 1, pp. 123-146
Cet article a éte moissonné depuis la source Heldermann Verlag
A connected group Δ of automorphisms of an 8-dimensional compact plane P fixes at most some collinear points or 2 points and 2 lines (double flag). For each possible configuration of fixed elements of a group of sufficiently large dimension the structure of Δ and its action on P is determined. Examples are given; in the case of a double flag, all planes are described explicitly.
Classification :
51H10
Mots-clés : Compact projective plane, Lie collineation group, elation, straight, dimension
Mots-clés : Compact projective plane, Lie collineation group, elation, straight, dimension
@article{JLT_2014_24_1_JLT_2014_24_1_a5,
author = {H. Salzmann },
title = {8-Dimensional {Compact} {Planes} with an {Automorphism} {Group} which has a {Normal} {Vector} {Subgroup}},
journal = {Journal of Lie theory},
pages = {123--146},
year = {2014},
volume = {24},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a5/}
}
TY - JOUR AU - H. Salzmann TI - 8-Dimensional Compact Planes with an Automorphism Group which has a Normal Vector Subgroup JO - Journal of Lie theory PY - 2014 SP - 123 EP - 146 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a5/ ID - JLT_2014_24_1_JLT_2014_24_1_a5 ER -
H. Salzmann . 8-Dimensional Compact Planes with an Automorphism Group which has a Normal Vector Subgroup. Journal of Lie theory, Tome 24 (2014) no. 1, pp. 123-146. http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a5/