Bounded Conjugators for Real Hyperbolic and Unipotent Elements in Semisimple Lie Groups
Journal of Lie theory, Tome 24 (2014) no. 1, pp. 259-305.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $G$ be a real semisimple Lie group with trivial centre and no compact factors. Given a conjugate pair of either real hyperbolic elements or unipotent elements $a$ and $b$ in $G$ we find a conjugating element $g \in G$ such that $d_G(1,g) \leq L(d_G(1,u)+d_G(1,v))$, where $L$ is a positive constant which will depend on some property of $a$ and $b$ (when $a,b$ are unipotent we require that the Lie algebra of $G$ is split). For the vast majority of such elements however, $L$ can be assumed to be a uniform constant.
Classification : 20F65, 20F10, 22E46, 53C35
Mots-clés : Geometric group theory, conjugacy problem, semisimple Lie groups
@article{JLT_2014_24_1_JLT_2014_24_1_a11,
     author = {A. Sale },
     title = {Bounded {Conjugators} for {Real} {Hyperbolic} and {Unipotent} {Elements} in {Semisimple} {Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {259--305},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a11/}
}
TY  - JOUR
AU  - A. Sale 
TI  - Bounded Conjugators for Real Hyperbolic and Unipotent Elements in Semisimple Lie Groups
JO  - Journal of Lie theory
PY  - 2014
SP  - 259
EP  - 305
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a11/
ID  - JLT_2014_24_1_JLT_2014_24_1_a11
ER  - 
%0 Journal Article
%A A. Sale 
%T Bounded Conjugators for Real Hyperbolic and Unipotent Elements in Semisimple Lie Groups
%J Journal of Lie theory
%D 2014
%P 259-305
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a11/
%F JLT_2014_24_1_JLT_2014_24_1_a11
A. Sale . Bounded Conjugators for Real Hyperbolic and Unipotent Elements in Semisimple Lie Groups. Journal of Lie theory, Tome 24 (2014) no. 1, pp. 259-305. http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a11/