Composition Series of gl(m) as a Module for its Classical Subalgebras over an Arbitrary Field
Journal of Lie theory, Tome 24 (2014) no. 1, pp. 225-258.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\gl{{\frak gl}} Let $F$ be an arbitrary field and let $f\colon V\times V\to F$ be a non-degenerate symmetric or alternating bilinear form defined on a finite dimensional vector space over $F$. Let $L(f)$ be the subalgebra of $\gl(V)$ formed by all skew-adjoint endomorphisms with respect to $f$. We find a composition series for the $L(f)$-module $\gl(V)$ and furnish multiple identifications for its composition factors.
Classification : 17B10, 17B05
Mots-clés : Lie algebra, bilinear form, irreducible module, composition series
@article{JLT_2014_24_1_JLT_2014_24_1_a10,
     author = {M. Chaktoura and F. Szechtman },
     title = {Composition {Series} of gl(m) as a {Module} for its {Classical} {Subalgebras} over an {Arbitrary} {Field}},
     journal = {Journal of Lie theory},
     pages = {225--258},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a10/}
}
TY  - JOUR
AU  - M. Chaktoura
AU  - F. Szechtman 
TI  - Composition Series of gl(m) as a Module for its Classical Subalgebras over an Arbitrary Field
JO  - Journal of Lie theory
PY  - 2014
SP  - 225
EP  - 258
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a10/
ID  - JLT_2014_24_1_JLT_2014_24_1_a10
ER  - 
%0 Journal Article
%A M. Chaktoura
%A F. Szechtman 
%T Composition Series of gl(m) as a Module for its Classical Subalgebras over an Arbitrary Field
%J Journal of Lie theory
%D 2014
%P 225-258
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a10/
%F JLT_2014_24_1_JLT_2014_24_1_a10
M. Chaktoura; F. Szechtman . Composition Series of gl(m) as a Module for its Classical Subalgebras over an Arbitrary Field. Journal of Lie theory, Tome 24 (2014) no. 1, pp. 225-258. http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a10/