Composition Series of gl(m) as a Module for its Classical Subalgebras over an Arbitrary Field
Journal of Lie theory, Tome 24 (2014) no. 1, pp. 225-258
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\gl{{\frak gl}} Let $F$ be an arbitrary field and let $f\colon V\times V\to F$ be a non-degenerate symmetric or alternating bilinear form defined on a finite dimensional vector space over $F$. Let $L(f)$ be the subalgebra of $\gl(V)$ formed by all skew-adjoint endomorphisms with respect to $f$. We find a composition series for the $L(f)$-module $\gl(V)$ and furnish multiple identifications for its composition factors.
Classification :
17B10, 17B05
Mots-clés : Lie algebra, bilinear form, irreducible module, composition series
Mots-clés : Lie algebra, bilinear form, irreducible module, composition series
@article{JLT_2014_24_1_JLT_2014_24_1_a10,
author = {M. Chaktoura and F. Szechtman },
title = {Composition {Series} of gl(m) as a {Module} for its {Classical} {Subalgebras} over an {Arbitrary} {Field}},
journal = {Journal of Lie theory},
pages = {225--258},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a10/}
}
TY - JOUR AU - M. Chaktoura AU - F. Szechtman TI - Composition Series of gl(m) as a Module for its Classical Subalgebras over an Arbitrary Field JO - Journal of Lie theory PY - 2014 SP - 225 EP - 258 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a10/ ID - JLT_2014_24_1_JLT_2014_24_1_a10 ER -
%0 Journal Article %A M. Chaktoura %A F. Szechtman %T Composition Series of gl(m) as a Module for its Classical Subalgebras over an Arbitrary Field %J Journal of Lie theory %D 2014 %P 225-258 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a10/ %F JLT_2014_24_1_JLT_2014_24_1_a10
M. Chaktoura; F. Szechtman . Composition Series of gl(m) as a Module for its Classical Subalgebras over an Arbitrary Field. Journal of Lie theory, Tome 24 (2014) no. 1, pp. 225-258. http://geodesic.mathdoc.fr/item/JLT_2014_24_1_JLT_2014_24_1_a10/