Hom-Lie Superalgebra Structures on Finite-Dimensional Simple Lie Superalgebras
Journal of Lie theory, Tome 23 (2013) no. 4, pp. 1115-1128
Cet article a éte moissonné depuis la source Heldermann Verlag
Hom-Lie superalgebras, which can be considered as deformations of Lie superalgebras, are Z2-graded generalizations of Hom-Lie algebras. In this paper, we prove that there only exists the trivial Hom-Lie superalgebra structure on a finite-dimensional simple Lie superalgebra.
Classification :
17B05, 17B40, 17B60
Mots-clés : Simple Lie superalgebra, Hom-Lie superalgebra
Mots-clés : Simple Lie superalgebra, Hom-Lie superalgebra
@article{JLT_2013_23_4_JLT_2013_23_4_a13,
author = {B. Cao and L. Luo },
title = {Hom-Lie {Superalgebra} {Structures} on {Finite-Dimensional} {Simple} {Lie} {Superalgebras}},
journal = {Journal of Lie theory},
pages = {1115--1128},
year = {2013},
volume = {23},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a13/}
}
TY - JOUR AU - B. Cao AU - L. Luo TI - Hom-Lie Superalgebra Structures on Finite-Dimensional Simple Lie Superalgebras JO - Journal of Lie theory PY - 2013 SP - 1115 EP - 1128 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a13/ ID - JLT_2013_23_4_JLT_2013_23_4_a13 ER -
B. Cao; L. Luo . Hom-Lie Superalgebra Structures on Finite-Dimensional Simple Lie Superalgebras. Journal of Lie theory, Tome 23 (2013) no. 4, pp. 1115-1128. http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a13/