Minimal Faithful Representation of the Heisenberg Lie Algebra with Abelian Factor
Journal of Lie theory, Tome 23 (2013) no. 4, pp. 1105-1114
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\a{{\frak a}} \def\g{{\frak g}} \def\h{{\frak h}} \def\k{{\frak k}} \def\N{{\Bbb N}} For a finite dimensional Lie algebra $\g$ over a field $\k$ of characteristic zero, the $\mu$-function (respectively $\mu_{\rm{nil}}$-function) is defined to be the minimal dimension of $V$ such that $\g$ admits a faithful representation (respectively a faithful nilrepresentation) on $V$. Let $\h_m$ be the Heisenberg Lie algebra of dimension $2m + 1$ and let $\a_n$ be the abelian Lie algebra of dimension $n$. The aim of this paper is to compute $\mu(\h_m \oplus \a_n)$ and $\mu_{\rm{nil}}(\h_m \oplus \a_n)$ for all $m,n \in \N$. We also give a faithful representation and faithful nilrepresentation of $\h_m \oplus \a_n$ of minimal dimension for all $m,n \in \N$.
Classification :
17B10, 17B30, 20C40
Mots-clés : Nilpotent Lie algebras, Heisenberg Lie algebra, Ado's Theorem, minimal faithful representation, nilrepresentation
Mots-clés : Nilpotent Lie algebras, Heisenberg Lie algebra, Ado's Theorem, minimal faithful representation, nilrepresentation
@article{JLT_2013_23_4_JLT_2013_23_4_a12,
author = {N. E. Rojas },
title = {Minimal {Faithful} {Representation} of the {Heisenberg} {Lie} {Algebra} with {Abelian} {Factor}},
journal = {Journal of Lie theory},
pages = {1105--1114},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2013},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a12/}
}
TY - JOUR AU - N. E. Rojas TI - Minimal Faithful Representation of the Heisenberg Lie Algebra with Abelian Factor JO - Journal of Lie theory PY - 2013 SP - 1105 EP - 1114 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a12/ ID - JLT_2013_23_4_JLT_2013_23_4_a12 ER -
N. E. Rojas . Minimal Faithful Representation of the Heisenberg Lie Algebra with Abelian Factor. Journal of Lie theory, Tome 23 (2013) no. 4, pp. 1105-1114. http://geodesic.mathdoc.fr/item/JLT_2013_23_4_JLT_2013_23_4_a12/