Schr�dinger Equation on Homogeneous Trees
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 779-794.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\T{{\Bbb T}} Let $\T$ be a homogeneous tree and $\cal L$ the Laplace operator on $\T$. We consider the semilinear Schr\"odinger equation associated to $\cal L$ with a power-like nonlinearity $F$ of degree $\gamma$. We first obtain dispersive estimates and Strichartz estimates with no admissibility conditions. We next deduce global well-posedness for small $L^2$ data with no gauge invariance assumption on the nonlinearity $F$. On the other hand if $F$ is gauge invariant, $L^2$ conservation leads to global well-posedness for arbitrary $L^2$ data. Notice that, in contrast with the Euclidean case, these global well-posedness results hold for all finite $\gamma\ge 1$. We finally prove scattering for arbitrary $L^2$ data under the gauge invariance assumption.
Classification : 35Q55, 43A90, 22E35, 43A85, 81Q05, 81Q35, 35R02
Mots-clés : Homogeneous tree, nonlinear Schr\"odinger equation, dispersive estimate, Strichartz estimate, scattering
@article{JLT_2013_23_3_JLT_2013_23_3_a9,
     author = {A. J. Eddine },
     title = {Schr�dinger {Equation} on {Homogeneous} {Trees}},
     journal = {Journal of Lie theory},
     pages = {779--794},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a9/}
}
TY  - JOUR
AU  - A. J. Eddine 
TI  - Schr�dinger Equation on Homogeneous Trees
JO  - Journal of Lie theory
PY  - 2013
SP  - 779
EP  - 794
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a9/
ID  - JLT_2013_23_3_JLT_2013_23_3_a9
ER  - 
%0 Journal Article
%A A. J. Eddine 
%T Schr�dinger Equation on Homogeneous Trees
%J Journal of Lie theory
%D 2013
%P 779-794
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a9/
%F JLT_2013_23_3_JLT_2013_23_3_a9
A. J. Eddine . Schr�dinger Equation on Homogeneous Trees. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 779-794. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a9/