A Characterization of the Unitary Highest Weight Modules by Euclidean Jordan Algebras
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 747-778
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\c{{\frak c}} \def\o{{\frak o}} \def\C{{\Bbb C}} Let $\c\o(J)$ be the conformal algebra of a simple Euclidean Jordan algebra $J$. We show that a (non-trivial) unitary highest weight $\c\o(J)$-module has the smallest positive Gelfand-Kirillov dimension if and only if a certain quadratic relation is satisfied in the universal enveloping algebra $U(\c\o(J)_\C)$. In particular, we find an quadratic element in $U(\c\o(J)_\C)$. A prime ideal in $U(\c\o(J)_\C)$ equals the Joseph ideal if and only if it contains this quadratic element.
Classification :
22E47, 17B10, 17C99
Mots-clés : Euclidean Jordan algebras, unitary highest weight module, quadratic relation, Joseph Ideal
Mots-clés : Euclidean Jordan algebras, unitary highest weight module, quadratic relation, Joseph Ideal
@article{JLT_2013_23_3_JLT_2013_23_3_a8,
author = {Z. Bai },
title = {A {Characterization} of the {Unitary} {Highest} {Weight} {Modules} by {Euclidean} {Jordan} {Algebras}},
journal = {Journal of Lie theory},
pages = {747--778},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2013},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a8/}
}
TY - JOUR AU - Z. Bai TI - A Characterization of the Unitary Highest Weight Modules by Euclidean Jordan Algebras JO - Journal of Lie theory PY - 2013 SP - 747 EP - 778 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a8/ ID - JLT_2013_23_3_JLT_2013_23_3_a8 ER -
Z. Bai . A Characterization of the Unitary Highest Weight Modules by Euclidean Jordan Algebras. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 747-778. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a8/