A Characterization of the Unitary Highest Weight Modules by Euclidean Jordan Algebras
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 747-778.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\c{{\frak c}} \def\o{{\frak o}} \def\C{{\Bbb C}} Let $\c\o(J)$ be the conformal algebra of a simple Euclidean Jordan algebra $J$. We show that a (non-trivial) unitary highest weight $\c\o(J)$-module has the smallest positive Gelfand-Kirillov dimension if and only if a certain quadratic relation is satisfied in the universal enveloping algebra $U(\c\o(J)_\C)$. In particular, we find an quadratic element in $U(\c\o(J)_\C)$. A prime ideal in $U(\c\o(J)_\C)$ equals the Joseph ideal if and only if it contains this quadratic element.
Classification : 22E47, 17B10, 17C99
Mots-clés : Euclidean Jordan algebras, unitary highest weight module, quadratic relation, Joseph Ideal
@article{JLT_2013_23_3_JLT_2013_23_3_a8,
     author = {Z. Bai },
     title = {A {Characterization} of the {Unitary} {Highest} {Weight} {Modules} by {Euclidean} {Jordan} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {747--778},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a8/}
}
TY  - JOUR
AU  - Z. Bai 
TI  - A Characterization of the Unitary Highest Weight Modules by Euclidean Jordan Algebras
JO  - Journal of Lie theory
PY  - 2013
SP  - 747
EP  - 778
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a8/
ID  - JLT_2013_23_3_JLT_2013_23_3_a8
ER  - 
%0 Journal Article
%A Z. Bai 
%T A Characterization of the Unitary Highest Weight Modules by Euclidean Jordan Algebras
%J Journal of Lie theory
%D 2013
%P 747-778
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a8/
%F JLT_2013_23_3_JLT_2013_23_3_a8
Z. Bai . A Characterization of the Unitary Highest Weight Modules by Euclidean Jordan Algebras. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 747-778. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a8/