Direct Systems of Spherical Functions and Representations
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 711-729.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\varinjlim{\smash{\lim\limits_{\longrightarrow}}\ } \def\C{{\Bbb C}} \def\F{{\Bbb F}} \def\H{{\Bbb H}} \def\R{{\Bbb R}} Spherical representations and functions are the building blocks for harmonic analysis on riemannian symmetric spaces. Here we consider spherical functions and spherical representations related to certain infinite dimensional symmetric spaces $G_\infty/K_\infty = \varinjlim G_n/K_n$. We use the representation theoretic construction $\varphi (x) = \langle e, \pi(x)e\rangle$ where $e$ is a $K_\infty$-fixed unit vector for $\pi$. Specifically, we look at representations $\pi_\infty = \varinjlim \pi_n$ of $G_\infty$ where $\pi_n$ is $K_n$-spherical, so the spherical representations $\pi_n$ and the corresponding spherical functions $\varphi_n$ are related by $\varphi_n(x) = \langle e_n, \pi_n(x)e_n\rangle$ where $e_n$ is a $K_n$-fixed unit vector for $\pi_n$, and we consider the possibility of constructing a $K_\infty$--spherical function $\varphi_\infty = \lim \varphi_n$. We settle that matter by proving the equivalence of\par (i) $\{e_n\}$ converges to a nonzero $K_\infty$--fixed vector $e$, and\par (ii) $G_\infty/K_\infty$ has finite symmetric space rank (equivalently, it is the Grassmann manifold of $p$-planes in $\F^\infty$ where $p \infty$ and $\F$ is $\R$, $\C$ or $\H$). In that finite rank case we also prove the functional equation $$ \varphi(x)\varphi(y) = \lim_{n\to \infty} \int_{K_n}\varphi(xky)dk $$ of Faraut and Olshanskii, which is their definition of spherical functions. We use this, and recent results of M. R\"osler, T. Koornwinder and M. Voit, to show that in the case of finite rank all $K_\infty$-spherical representations of $G_\infty$ are given by the above limit formula. This in particular shows that the characterization of the spherical representations in terms of highest weights is still valid as in the finite dimensional case.
Classification : 43A85, 53C35, 22E46
Mots-clés : Injective limits, compact symmetric spaces, spherical representations, spherical functions
@article{JLT_2013_23_3_JLT_2013_23_3_a6,
     author = {M. Dawson and G. �lafsson and J. A. Wolf },
     title = {Direct {Systems} of {Spherical} {Functions} and {Representations}},
     journal = {Journal of Lie theory},
     pages = {711--729},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a6/}
}
TY  - JOUR
AU  - M. Dawson
AU  - G. �lafsson
AU  - J. A. Wolf 
TI  - Direct Systems of Spherical Functions and Representations
JO  - Journal of Lie theory
PY  - 2013
SP  - 711
EP  - 729
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a6/
ID  - JLT_2013_23_3_JLT_2013_23_3_a6
ER  - 
%0 Journal Article
%A M. Dawson
%A G. �lafsson
%A J. A. Wolf 
%T Direct Systems of Spherical Functions and Representations
%J Journal of Lie theory
%D 2013
%P 711-729
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a6/
%F JLT_2013_23_3_JLT_2013_23_3_a6
M. Dawson; G. �lafsson; J. A. Wolf . Direct Systems of Spherical Functions and Representations. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 711-729. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a6/