The Structure of H-(co)module Lie algebras
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 669-689
Cet article a éte moissonné depuis la source Heldermann Verlag
Let $L$ be a finite dimensional Lie algebra over a field of characteristic $0$. Then by the original Levi theorem, $L = B \oplus R$ where $R$ is the solvable radical and $B$ is some maximal semisimple subalgebra. We prove that if $L$ is an $H$-(co)module algebra for a finite dimensional (co)semisimple Hopf algebra $H$, then $R$ is $H$-(co)invariant and $B$ can be chosen to be $H$-(co)invariant too. Moreover, the nilpotent radical $N$ of $L$ is $H$-(co)invariant and there exists an $H$-sub(co)module $S\subseteq R$ such that $R=S\oplus N$ and $[B,S]=0$. In addition, the $H$-(co)invariant analog of the Weyl theorem is proved. In fact, under certain conditions, these results hold for an $H$-comodule Lie algebra $L$, even if $H$ is infinite dimensional. In particular, if $L$ is a Lie algebra graded by an arbitrary group $G$, then $B$ can be chosen to be graded, and if $L$ is a Lie algebra with a rational action of a reductive affine algebraic group $G$ by automorphisms, then $B$ can be chosen to be $G$-invariant. Also we prove that every finite dimensional semisimple $H$-(co)module Lie algebra over a field of characteristic $0$ is a direct sum of its minimal $H$-(co)invariant ideals.
Classification :
17B05, 17B40, 17B55, 17B70, 16T05, 14L17
Mots-clés : Lie algebra, stability, Levi decomposition, radical, grading, Hopf algebra, Hopf algebra action, $H$-module algebra, $H$-comodule algebra
Mots-clés : Lie algebra, stability, Levi decomposition, radical, grading, Hopf algebra, Hopf algebra action, $H$-module algebra, $H$-comodule algebra
@article{JLT_2013_23_3_JLT_2013_23_3_a3,
author = {A. S. Gordienko },
title = {The {Structure} of {H-(co)module} {Lie} algebras},
journal = {Journal of Lie theory},
pages = {669--689},
year = {2013},
volume = {23},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a3/}
}
A. S. Gordienko . The Structure of H-(co)module Lie algebras. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 669-689. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a3/