The Group Structure for Jet Bundles over Lie Groups
Journal of Lie theory, Tome 23 (2013) no. 3, pp. 885-897.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} The jet bundle $J^kG$ of $k$-jets of curves in a Lie group $G$ has a natural Lie group structure. We present an explicit formula for the group multiplication in the right trivialization and for the group 2-cocycle describing the abelian Lie group extension $\g\to J^{k}G\to J^{k-1}G$.
Classification : 58A20, 20K35, 05A18
Mots-clés : Jet bundle, group cocycle, ordered partition, Leibniz algebra, near-ring
@article{JLT_2013_23_3_JLT_2013_23_3_a15,
     author = {C. Vizman },
     title = {The {Group} {Structure} for {Jet} {Bundles} over {Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {885--897},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a15/}
}
TY  - JOUR
AU  - C. Vizman 
TI  - The Group Structure for Jet Bundles over Lie Groups
JO  - Journal of Lie theory
PY  - 2013
SP  - 885
EP  - 897
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a15/
ID  - JLT_2013_23_3_JLT_2013_23_3_a15
ER  - 
%0 Journal Article
%A C. Vizman 
%T The Group Structure for Jet Bundles over Lie Groups
%J Journal of Lie theory
%D 2013
%P 885-897
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a15/
%F JLT_2013_23_3_JLT_2013_23_3_a15
C. Vizman . The Group Structure for Jet Bundles over Lie Groups. Journal of Lie theory, Tome 23 (2013) no. 3, pp. 885-897. http://geodesic.mathdoc.fr/item/JLT_2013_23_3_JLT_2013_23_3_a15/