Multiplicity Free Spaces with a One-Dimensional Quotient
Journal of Lie theory, Tome 23 (2013) no. 2, pp. 433-458.

Voir la notice de l'article provenant de la source Heldermann Verlag

The multiplicity free spaces with a one dimensional quotient were introduced by Thierry Levasseur ["Radial components, prehomogeneous vector spaces, and rational Cherednik algebras", Int. Math. Res. Not. IMRN 2009, no 3, 462--511]. Recently, the author has shown that the algebra of differential operators on such spaces which are invariant under the semi-simple part of the group is a Smith algebra ["Invariant differential operators on a class of multiplicity free spaces", arXiv:1103.1721v1 (math.RT)]. We give here the classification of these spaces which are indecomposable, up to geometric equivalence. We also investigate whether or not these spaces are regular or of parabolic type as a prehomogeneous vector space.
Classification : 14L30, 11S90, 22E46
Mots-clés : Multiplicity free spaces, one dimensional quotient, prehomogeneous vector spaces
@article{JLT_2013_23_2_JLT_2013_23_2_a4,
     author = {H. Rubenthaler },
     title = {Multiplicity {Free} {Spaces} with a {One-Dimensional} {Quotient}},
     journal = {Journal of Lie theory},
     pages = {433--458},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_2_JLT_2013_23_2_a4/}
}
TY  - JOUR
AU  - H. Rubenthaler 
TI  - Multiplicity Free Spaces with a One-Dimensional Quotient
JO  - Journal of Lie theory
PY  - 2013
SP  - 433
EP  - 458
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_2_JLT_2013_23_2_a4/
ID  - JLT_2013_23_2_JLT_2013_23_2_a4
ER  - 
%0 Journal Article
%A H. Rubenthaler 
%T Multiplicity Free Spaces with a One-Dimensional Quotient
%J Journal of Lie theory
%D 2013
%P 433-458
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_2_JLT_2013_23_2_a4/
%F JLT_2013_23_2_JLT_2013_23_2_a4
H. Rubenthaler . Multiplicity Free Spaces with a One-Dimensional Quotient. Journal of Lie theory, Tome 23 (2013) no. 2, pp. 433-458. http://geodesic.mathdoc.fr/item/JLT_2013_23_2_JLT_2013_23_2_a4/