Isometries of Hermitian Symmetric Spaces
Journal of Lie theory, Tome 23 (2013) no. 1, pp. 113-118
Cet article a éte moissonné depuis la source Heldermann Verlag
We show that every isometry of a canonically embedded hermitian symmetric space extends to an isometry of its ambient transvection Lie algebra.
Classification :
32M15, 53C35, 53C40
Mots-clés : Isometries, hermitian symmetric spaces, extrinsic geometry
Mots-clés : Isometries, hermitian symmetric spaces, extrinsic geometry
@article{JLT_2013_23_1_JLT_2013_23_1_a4,
author = {J.-H. Eschenburg and P. Quast and M. S. Tanaka},
title = {Isometries of {Hermitian} {Symmetric} {Spaces}},
journal = {Journal of Lie theory},
pages = {113--118},
year = {2013},
volume = {23},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_1_JLT_2013_23_1_a4/}
}
J.-H. Eschenburg; P. Quast; M. S. Tanaka. Isometries of Hermitian Symmetric Spaces. Journal of Lie theory, Tome 23 (2013) no. 1, pp. 113-118. http://geodesic.mathdoc.fr/item/JLT_2013_23_1_JLT_2013_23_1_a4/