The Orthosymplectic Superalgebra in Harmonic Analysis
Journal of Lie theory, Tome 23 (2013) no. 1, pp. 55-83.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\l{{\frak l}} \def\o{{\frak o}} \def\p{{\frak p}} \def\s{{\frak s}} \def\R{{\Bbb R}} \def\osp{\o\s\p(m|2n)} We introduce the orthosymplectic superalgebra $\osp$ as the algebra of Killing vector fields on Riemannian superspace $\R^{m|2n}$ which stabilize the origin. The Laplace operator and norm squared on $\R^{m|2n}$, which generate $\s\l_2$, are orthosymplectically invariant, therefore we obtain the Howe dual pair $(\osp(m|2n),\s\l_2)$. We study the $\osp$-representation structure of the kernel of the Laplace operator. This also yields the decomposition of the supersymmetric tensor powers of the fundamental $\osp$-representation under the action of $\s\l_2\times\osp$. As a side result we obtain information about the irreducible $\osp$-representations $L_{(k,0,\cdots,0)}^{m|2n}$. In particular we find branching rules with respect to $\osp(m-1|2n)$. We also prove that integration over the supersphere is uniquely defined by its orthosymplectic invariance.
Classification : 17B10, 58C50, 17B15
Mots-clés : Howe dual pair, orthosymplectic superalgebra, not completely reducible representations, supersymmetric tensor product
@article{JLT_2013_23_1_JLT_2013_23_1_a2,
     author = {K. Coulembier },
     title = {The {Orthosymplectic} {Superalgebra} in {Harmonic} {Analysis}},
     journal = {Journal of Lie theory},
     pages = {55--83},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JLT_2013_23_1_JLT_2013_23_1_a2/}
}
TY  - JOUR
AU  - K. Coulembier 
TI  - The Orthosymplectic Superalgebra in Harmonic Analysis
JO  - Journal of Lie theory
PY  - 2013
SP  - 55
EP  - 83
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2013_23_1_JLT_2013_23_1_a2/
ID  - JLT_2013_23_1_JLT_2013_23_1_a2
ER  - 
%0 Journal Article
%A K. Coulembier 
%T The Orthosymplectic Superalgebra in Harmonic Analysis
%J Journal of Lie theory
%D 2013
%P 55-83
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2013_23_1_JLT_2013_23_1_a2/
%F JLT_2013_23_1_JLT_2013_23_1_a2
K. Coulembier . The Orthosymplectic Superalgebra in Harmonic Analysis. Journal of Lie theory, Tome 23 (2013) no. 1, pp. 55-83. http://geodesic.mathdoc.fr/item/JLT_2013_23_1_JLT_2013_23_1_a2/