The Minimal Representation of the Conformal Group and Classical Solutions to the Wave Equation
Journal of Lie theory, Tome 22 (2012) no. 2, pp. 301-36
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\R{\mathbb{R}} Using an idea of Dirac, we give a geometric construction of a unitary lowest weight representation ${\cal H}^{+}$ and a unitary highest weight representation ${\cal H}^{-}$ of a double cover of the conformal group SO$(2,n+1)_{0}$ for every $n\geq 2$. The smooth vectors in ${\cal H}^{+}$ and ${\cal H}^{-}$ consist of complex-valued solutions to the wave equation $\Box f=0$ on Minkowski space $\R^{1,n}=\R\times \R^{n}$ and the invariant product is the usual Klein-Gordon product. We then give explicit orthonormal bases for the spaces ${\cal H}^{+}$ and ${\cal H}^{-}$ consisting of weight vectors; when $n$ is odd, our bases consist of rational functions. Furthermore, we show that if $\Phi, \Psi\in {\cal S}(\R^{1,n})$ are real-valued Schwartz functions and $u\in {\cal C}^{\infty}(\R^{1,n})$ is the (real-valued) solution to the Cauchy problem $\Box u=0$, $u(0,x)=\Phi(x)$, $\partial_tu(0,x)=\Psi(x)$, then there exists a unique real-valued $v\in {\cal C}^{\infty}(\R^{1,n})$ such that $u+iv\in {\cal H}^{+}$ and $u-iv\in{\cal H}^{-}$.
Classification :
22E45, 22E70, 35A09, 35A30, 58J70
Mots-clés : Conformal group, minimal representation, wave equation, classical solutions, Cauchy problem
Mots-clés : Conformal group, minimal representation, wave equation, classical solutions, Cauchy problem
@article{JLT_2012_22_2_JLT_2012_22_2_a0,
author = {M. Hunziker and M. R. Sepanski and R. J. Stanke },
title = {The {Minimal} {Representation} of the {Conformal} {Group} and {Classical} {Solutions} to the {Wave} {Equation}},
journal = {Journal of Lie theory},
pages = {301--36},
year = {2012},
volume = {22},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a0/}
}
TY - JOUR AU - M. Hunziker AU - M. R. Sepanski AU - R. J. Stanke TI - The Minimal Representation of the Conformal Group and Classical Solutions to the Wave Equation JO - Journal of Lie theory PY - 2012 SP - 301 EP - 36 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a0/ ID - JLT_2012_22_2_JLT_2012_22_2_a0 ER -
%0 Journal Article %A M. Hunziker %A M. R. Sepanski %A R. J. Stanke %T The Minimal Representation of the Conformal Group and Classical Solutions to the Wave Equation %J Journal of Lie theory %D 2012 %P 301-36 %V 22 %N 2 %U http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a0/ %F JLT_2012_22_2_JLT_2012_22_2_a0
M. Hunziker; M. R. Sepanski; R. J. Stanke . The Minimal Representation of the Conformal Group and Classical Solutions to the Wave Equation. Journal of Lie theory, Tome 22 (2012) no. 2, pp. 301-36. http://geodesic.mathdoc.fr/item/JLT_2012_22_2_JLT_2012_22_2_a0/