Cubic Dirac Cohomology for Generalized Enright-Varadarajan Modules
Journal of Lie theory, Tome 21 (2011) no. 4, pp. 861-884
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\g{{\frak g}} \def\h{{\frak h}} \def\v{{\frak v}} For a complex semisimple Lie algebra $\g=\h\oplus\v$ where $\h$ is a quadratic subalgebra and $\h$ and $\v$ are orthogonal with respect to the Killing form, we construct a large family of $(\g,\h)$-modules with non-zero cubic Dirac cohomology. Our method uses analogue of the construction of generalized Enright-Varadarajan modules for what we call $(\h,\v)$-split parabolic subalgebras. This family of modules includes discrete series representations and ${\cal A}_{\q}(\lambda)$-modules.
Classification :
22E46, 22E47, 17B10
Mots-clés : Quadratic subalgebra, generalized Enright-Varadrajan module, (g,h)-module, Verma modules, Kostant's cubic Dirac operator, Dirac cohomology
Mots-clés : Quadratic subalgebra, generalized Enright-Varadrajan module, (g,h)-module, Verma modules, Kostant's cubic Dirac operator, Dirac cohomology
@article{JLT_2011_21_4_JLT_2011_21_4_a6,
author = {S. Mehdi and R. Parthasarathy },
title = {Cubic {Dirac} {Cohomology} for {Generalized} {Enright-Varadarajan} {Modules}},
journal = {Journal of Lie theory},
pages = {861--884},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a6/}
}
TY - JOUR AU - S. Mehdi AU - R. Parthasarathy TI - Cubic Dirac Cohomology for Generalized Enright-Varadarajan Modules JO - Journal of Lie theory PY - 2011 SP - 861 EP - 884 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a6/ ID - JLT_2011_21_4_JLT_2011_21_4_a6 ER -
S. Mehdi; R. Parthasarathy . Cubic Dirac Cohomology for Generalized Enright-Varadarajan Modules. Journal of Lie theory, Tome 21 (2011) no. 4, pp. 861-884. http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a6/