On Differentiability of Vectors in Lie Group Representations
Journal of Lie theory, Tome 21 (2011) no. 4, pp. 771-785
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\g{{\frak g}} We address a linearity problem for differentiable vectors in representations of infinite-dimensional Lie groups on locally convex spaces, which is similar to the linearity problem for the directional derivatives of functions. In particular, we find conditions ensuring that if $\pi\colon G\to{\rm End}({\cal Y})$ is such a representation, and $y\in{\cal Y}$ is a vector such that ${\rm d}\pi(x)y$ makes sense for every $x$ in the Lie algebra $\g$ of $G$, then the mapping ${\rm d}\pi(\cdot)y\colon\g\to{\cal Y}$ is linear and continuous.
Classification :
22E65, 22E66, 22A10, 22A25
Mots-clés : Lie group, topological group, unitary representation, smooth vector
Mots-clés : Lie group, topological group, unitary representation, smooth vector
@article{JLT_2011_21_4_JLT_2011_21_4_a1,
author = {I. Beltita and D. Beltita },
title = {On {Differentiability} of {Vectors} in {Lie} {Group} {Representations}},
journal = {Journal of Lie theory},
pages = {771--785},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a1/}
}
TY - JOUR AU - I. Beltita AU - D. Beltita TI - On Differentiability of Vectors in Lie Group Representations JO - Journal of Lie theory PY - 2011 SP - 771 EP - 785 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a1/ ID - JLT_2011_21_4_JLT_2011_21_4_a1 ER -
I. Beltita; D. Beltita . On Differentiability of Vectors in Lie Group Representations. Journal of Lie theory, Tome 21 (2011) no. 4, pp. 771-785. http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a1/