On Differentiability of Vectors in Lie Group Representations
Journal of Lie theory, Tome 21 (2011) no. 4, pp. 771-785.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} We address a linearity problem for differentiable vectors in representations of infinite-dimensional Lie groups on locally convex spaces, which is similar to the linearity problem for the directional derivatives of functions. In particular, we find conditions ensuring that if $\pi\colon G\to{\rm End}({\cal Y})$ is such a representation, and $y\in{\cal Y}$ is a vector such that ${\rm d}\pi(x)y$ makes sense for every $x$ in the Lie algebra $\g$ of $G$, then the mapping ${\rm d}\pi(\cdot)y\colon\g\to{\cal Y}$ is linear and continuous.
Classification : 22E65, 22E66, 22A10, 22A25
Mots-clés : Lie group, topological group, unitary representation, smooth vector
@article{JLT_2011_21_4_JLT_2011_21_4_a1,
     author = {I. Beltita and D. Beltita },
     title = {On {Differentiability} of {Vectors} in {Lie} {Group} {Representations}},
     journal = {Journal of Lie theory},
     pages = {771--785},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a1/}
}
TY  - JOUR
AU  - I. Beltita
AU  - D. Beltita 
TI  - On Differentiability of Vectors in Lie Group Representations
JO  - Journal of Lie theory
PY  - 2011
SP  - 771
EP  - 785
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a1/
ID  - JLT_2011_21_4_JLT_2011_21_4_a1
ER  - 
%0 Journal Article
%A I. Beltita
%A D. Beltita 
%T On Differentiability of Vectors in Lie Group Representations
%J Journal of Lie theory
%D 2011
%P 771-785
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a1/
%F JLT_2011_21_4_JLT_2011_21_4_a1
I. Beltita; D. Beltita . On Differentiability of Vectors in Lie Group Representations. Journal of Lie theory, Tome 21 (2011) no. 4, pp. 771-785. http://geodesic.mathdoc.fr/item/JLT_2011_21_4_JLT_2011_21_4_a1/