Orbits in Real Zm-Graded Semisimple Lie Algebras
Journal of Lie theory, Tome 21 (2011) no. 2, pp. 285-305.

Voir la notice de l'article provenant de la source Heldermann Verlag

We propose a method to classify homogeneous nilpotent elements in a real Zm-graded semisimple Lie algebra g. Using this we describe the set of orbits of homogeneous elements in a real Z2-graded semisimple Lie algebra. A classification of 4-vectors (resp. 4-forms) on R8 can be given using this method.
Classification : 17B70, 15A72, 13A50
Mots-clés : Real Z-sub-m-graded Lie algebra, nilpotent elements, homogeneous elements
@article{JLT_2011_21_2_JLT_2011_21_2_a2,
     author = {H. V. Le },
     title = {Orbits in {Real} {Z\protect\textsubscript{m}-Graded} {Semisimple} {Lie} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {285--305},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a2/}
}
TY  - JOUR
AU  - H. V. Le 
TI  - Orbits in Real Zm-Graded Semisimple Lie Algebras
JO  - Journal of Lie theory
PY  - 2011
SP  - 285
EP  - 305
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a2/
ID  - JLT_2011_21_2_JLT_2011_21_2_a2
ER  - 
%0 Journal Article
%A H. V. Le 
%T Orbits in Real Zm-Graded Semisimple Lie Algebras
%J Journal of Lie theory
%D 2011
%P 285-305
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a2/
%F JLT_2011_21_2_JLT_2011_21_2_a2
H. V. Le . Orbits in Real Zm-Graded Semisimple Lie Algebras. Journal of Lie theory, Tome 21 (2011) no. 2, pp. 285-305. http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a2/