Orbits in Real Zm-Graded Semisimple Lie Algebras
Journal of Lie theory, Tome 21 (2011) no. 2, pp. 285-305
Cet article a éte moissonné depuis la source Heldermann Verlag
We propose a method to classify homogeneous nilpotent elements in a real Zm-graded semisimple Lie algebra g. Using this we describe the set of orbits of homogeneous elements in a real Z2-graded semisimple Lie algebra. A classification of 4-vectors (resp. 4-forms) on R8 can be given using this method.
Classification :
17B70, 15A72, 13A50
Mots-clés : Real Z-sub-m-graded Lie algebra, nilpotent elements, homogeneous elements
Mots-clés : Real Z-sub-m-graded Lie algebra, nilpotent elements, homogeneous elements
@article{JLT_2011_21_2_JLT_2011_21_2_a2,
author = {H. V. Le },
title = {Orbits in {Real} {Z\protect\textsubscript{m}-Graded} {Semisimple} {Lie} {Algebras}},
journal = {Journal of Lie theory},
pages = {285--305},
year = {2011},
volume = {21},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a2/}
}
H. V. Le . Orbits in Real Zm-Graded Semisimple Lie Algebras. Journal of Lie theory, Tome 21 (2011) no. 2, pp. 285-305. http://geodesic.mathdoc.fr/item/JLT_2011_21_2_JLT_2011_21_2_a2/