Global Lie Symmetries of the Heat and Schr�dinger Equation
Journal of Lie theory, Tome 20 (2010) no. 3, pp. 543-58
Cet article a éte moissonné depuis la source Heldermann Verlag
We examine solutions to a family of differential equations, including the heat and Schr�dinger equations, that are globally invariant under the action of the corresponding Lie symmetry group. The solution space is realized in a nonstandard parabolically induced representation space as the kernel of a linear combination of Casimir operators of certain distinguished subgroups. Composition series provide a complete description of this kernel and, for special inducing parameters, the oscillator representation is realized in a natural and explicit way as a subspace of solutions to the Schr�dinger equation.
Classification :
58J70, 22E45, 22E70, 35A30
Mots-clés : Heat equation, Schroedinger equation, oscillator representation
Mots-clés : Heat equation, Schroedinger equation, oscillator representation
@article{JLT_2010_20_3_JLT_2010_20_3_a6,
author = {M. R. Sepanski and R. J. Stanke },
title = {Global {Lie} {Symmetries} of the {Heat} and {Schr�dinger} {Equation}},
journal = {Journal of Lie theory},
pages = {543--58},
year = {2010},
volume = {20},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a6/}
}
M. R. Sepanski; R. J. Stanke . Global Lie Symmetries of the Heat and Schr�dinger Equation. Journal of Lie theory, Tome 20 (2010) no. 3, pp. 543-58. http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a6/