Graded Nilpotent Lie Algebras of Infinite Type
Journal of Lie theory, Tome 20 (2010) no. 3, pp. 525-541.

Voir la notice de l'article provenant de la source Heldermann Verlag

The paper gives the complete characterization of all graded nilpotent Lie algebras with infinite-dimensional Tanaka prolongation as extensions of graded nilpotent Lie algebras of lower dimension by means of a commutative ideal. We introduce a notion of weak characteristics of a vector distribution and prove that if a bracket-generating distribution of constant type does not have non-zero complex weak characteristics, then its symmetry algebra is necessarily finite-dimensional. The paper also contains a number of illustrative algebraic and geometric examples including the proof that any metabelian Lie algebra with a 2-dimensional center always has an infinite-dimensional Tanaka prolongation.
Classification : 17B70, 53C30, 58A17
Mots-clés : Graded nilpotent Lie algebras, Tanaka prolongation, metabelian Lie algebras, Lie algebra cohomology
@article{JLT_2010_20_3_JLT_2010_20_3_a5,
     author = {B. Doubrov and O. Radko },
     title = {Graded {Nilpotent} {Lie} {Algebras} of {Infinite} {Type}},
     journal = {Journal of Lie theory},
     pages = {525--541},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a5/}
}
TY  - JOUR
AU  - B. Doubrov
AU  - O. Radko 
TI  - Graded Nilpotent Lie Algebras of Infinite Type
JO  - Journal of Lie theory
PY  - 2010
SP  - 525
EP  - 541
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a5/
ID  - JLT_2010_20_3_JLT_2010_20_3_a5
ER  - 
%0 Journal Article
%A B. Doubrov
%A O. Radko 
%T Graded Nilpotent Lie Algebras of Infinite Type
%J Journal of Lie theory
%D 2010
%P 525-541
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a5/
%F JLT_2010_20_3_JLT_2010_20_3_a5
B. Doubrov; O. Radko . Graded Nilpotent Lie Algebras of Infinite Type. Journal of Lie theory, Tome 20 (2010) no. 3, pp. 525-541. http://geodesic.mathdoc.fr/item/JLT_2010_20_3_JLT_2010_20_3_a5/