Associative Geometries. II: Involutions, the Classical Torsors, and their Homotopes
Journal of Lie theory, Tome 20 (2010) no. 2, pp. 253-282.

Voir la notice de l'article provenant de la source Heldermann Verlag

For all classical groups (and for their analogs in infinite dimension or over general base fields or rings) we construct certain contractions, called "homotopes". The construction is geometric, using as ingredient involutions of associative geometries. We prove that, under suitable assumptions, the groups and their homotopes have a canonical semigroup completion.
Classification : 20N10, 17C37, 16W10
Mots-clés : Classical groups, homotope, associative triple systems, semigroup completion, involution, linear relation, adjoint relation, complemented lattice, orthocomplementation, generalized projection, torsor
@article{JLT_2010_20_2_JLT_2010_20_2_a1,
     author = {W. Bertram and M. Kinyon },
     title = {Associative {Geometries.} {II:} {Involutions,} the {Classical} {Torsors,} and their {Homotopes}},
     journal = {Journal of Lie theory},
     pages = {253--282},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a1/}
}
TY  - JOUR
AU  - W. Bertram
AU  - M. Kinyon 
TI  - Associative Geometries. II: Involutions, the Classical Torsors, and their Homotopes
JO  - Journal of Lie theory
PY  - 2010
SP  - 253
EP  - 282
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a1/
ID  - JLT_2010_20_2_JLT_2010_20_2_a1
ER  - 
%0 Journal Article
%A W. Bertram
%A M. Kinyon 
%T Associative Geometries. II: Involutions, the Classical Torsors, and their Homotopes
%J Journal of Lie theory
%D 2010
%P 253-282
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a1/
%F JLT_2010_20_2_JLT_2010_20_2_a1
W. Bertram; M. Kinyon . Associative Geometries. II: Involutions, the Classical Torsors, and their Homotopes. Journal of Lie theory, Tome 20 (2010) no. 2, pp. 253-282. http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a1/