Associative Geometries. II: Involutions, the Classical Torsors, and their Homotopes
Journal of Lie theory, Tome 20 (2010) no. 2, pp. 253-282
Cet article a éte moissonné depuis la source Heldermann Verlag
For all classical groups (and for their analogs in infinite dimension or over general base fields or rings) we construct certain contractions, called "homotopes". The construction is geometric, using as ingredient involutions of associative geometries. We prove that, under suitable assumptions, the groups and their homotopes have a canonical semigroup completion.
Classification :
20N10, 17C37, 16W10
Mots-clés : Classical groups, homotope, associative triple systems, semigroup completion, involution, linear relation, adjoint relation, complemented lattice, orthocomplementation, generalized projection, torsor
Mots-clés : Classical groups, homotope, associative triple systems, semigroup completion, involution, linear relation, adjoint relation, complemented lattice, orthocomplementation, generalized projection, torsor
@article{JLT_2010_20_2_JLT_2010_20_2_a1,
author = {W. Bertram and M. Kinyon },
title = {Associative {Geometries.} {II:} {Involutions,} the {Classical} {Torsors,} and their {Homotopes}},
journal = {Journal of Lie theory},
pages = {253--282},
year = {2010},
volume = {20},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a1/}
}
TY - JOUR AU - W. Bertram AU - M. Kinyon TI - Associative Geometries. II: Involutions, the Classical Torsors, and their Homotopes JO - Journal of Lie theory PY - 2010 SP - 253 EP - 282 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a1/ ID - JLT_2010_20_2_JLT_2010_20_2_a1 ER -
W. Bertram; M. Kinyon . Associative Geometries. II: Involutions, the Classical Torsors, and their Homotopes. Journal of Lie theory, Tome 20 (2010) no. 2, pp. 253-282. http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a1/