Associative Geometries. I: Torsors, Linear Relations and Grassmannians
Journal of Lie theory, Tome 20 (2010) no. 2, pp. 215-252.

Voir la notice de l'article provenant de la source Heldermann Verlag

We define and investigate a geometric object, called an "associative geometry", corresponding to an associative algebra (and, more generally, to an associative pair). Associative geometries combine aspects of Lie groups and of generalized projective geometries, where the former correspond to the Lie product of an associative algebra and the latter to its Jordan product. A further development of the theory encompassing involutive associative algebras will be given in Part II of this work.
Classification : 20N10, 17C37, 16W10
Mots-clés : Associative algebras and pairs, torsor, heap, groud, principal homogeneous space, semitorsor, linear relations, homotopy, isotopy, Grassmannian, generalized projective geometry
@article{JLT_2010_20_2_JLT_2010_20_2_a0,
     author = {W. Bertram and M. Kinyon },
     title = {Associative {Geometries.} {I:} {Torsors,} {Linear} {Relations} and {Grassmannians}},
     journal = {Journal of Lie theory},
     pages = {215--252},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a0/}
}
TY  - JOUR
AU  - W. Bertram
AU  - M. Kinyon 
TI  - Associative Geometries. I: Torsors, Linear Relations and Grassmannians
JO  - Journal of Lie theory
PY  - 2010
SP  - 215
EP  - 252
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a0/
ID  - JLT_2010_20_2_JLT_2010_20_2_a0
ER  - 
%0 Journal Article
%A W. Bertram
%A M. Kinyon 
%T Associative Geometries. I: Torsors, Linear Relations and Grassmannians
%J Journal of Lie theory
%D 2010
%P 215-252
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a0/
%F JLT_2010_20_2_JLT_2010_20_2_a0
W. Bertram; M. Kinyon . Associative Geometries. I: Torsors, Linear Relations and Grassmannians. Journal of Lie theory, Tome 20 (2010) no. 2, pp. 215-252. http://geodesic.mathdoc.fr/item/JLT_2010_20_2_JLT_2010_20_2_a0/