A Symmetric Version of Kontsevich Graph Complex and Leibniz Homology
Journal of Lie theory, Tome 20 (2010) no. 1, pp. 127-165.

Voir la notice de l'article provenant de la source Heldermann Verlag

Kontsevich has proven that the Lie homology of the Lie algebra of symplectic vector fields can be computed in terms of the homology of a graph complex. We prove that the Leibniz homology of this Lie algebra can be computed in terms of the homology of a variant of the graph complex endowed with an action of the symmetric groups. The resulting isomorphism is shown to be a Zinbiel-associative bialgebra isomorphism.
Classification : 16E40, 16W22, 05C90
Mots-clés : Kontsevich graph complex, Leibniz homology, graph homology, Zinbiel-associative bialgebras, co-invariant theory
@article{JLT_2010_20_1_JLT_2010_20_1_a8,
     author = {E. Burgunder },
     title = {A {Symmetric} {Version} of {Kontsevich} {Graph} {Complex} and {Leibniz} {Homology}},
     journal = {Journal of Lie theory},
     pages = {127--165},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a8/}
}
TY  - JOUR
AU  - E. Burgunder 
TI  - A Symmetric Version of Kontsevich Graph Complex and Leibniz Homology
JO  - Journal of Lie theory
PY  - 2010
SP  - 127
EP  - 165
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a8/
ID  - JLT_2010_20_1_JLT_2010_20_1_a8
ER  - 
%0 Journal Article
%A E. Burgunder 
%T A Symmetric Version of Kontsevich Graph Complex and Leibniz Homology
%J Journal of Lie theory
%D 2010
%P 127-165
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a8/
%F JLT_2010_20_1_JLT_2010_20_1_a8
E. Burgunder . A Symmetric Version of Kontsevich Graph Complex and Leibniz Homology. Journal of Lie theory, Tome 20 (2010) no. 1, pp. 127-165. http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a8/