Invariant Berezin Integration on Homogeneous Supermanifolds
Journal of Lie theory, Tome 20 (2010) no. 1, pp. 65-91.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\h{{\frak h}} Let $\cal G$ be a Lie supergroup and $\cal H$ a closed subsupergroup. We study the unimodularity of the homogeneous supermanifold $\cal G/\cal H$, i.\ e.\ the existence of $\cal G$-invariant sections of its Berezinian line bundle. To that end, we express this line bundle as a $\cal G$-equivariant associated bundle of the principal $\cal H$-bundle $\cal G\to \cal G/\cal H$. We also study the fibre integration of Berezinians on oriented fibre bundles. As an application, we prove a formula of `Fubini' type: $$ \int_{\cal G}f = (-1)^{\dim\h_1\cdot\dim\g/\h}\int_{\cal G/\cal H} \int_{\cal H}f,\ \text{for all}\ f\in\Gamma_c(G,\cal O_{\cal G}). $$ Moreover, we derive analogues of integral formulae for the transformation under local isomorphisms $\cal G/\cal H\to \cal S/\cal T\!$, and under the products of Lie subsupergroups $\cal M\cdot\cal H\subset\cal U$. The classical counterparts of these formulae have numerous applications in harmonic analysis.
Classification : 58A50, 58C50, 53C30
Mots-clés : Supermanifold, Lie supergroup, homogeneous superspace, Berezin integral, invariant Berezinian form, unimodularity, Fubini formula, fibre integration
@article{JLT_2010_20_1_JLT_2010_20_1_a5,
     author = {A. Alldridge and J. Hilgert },
     title = {Invariant {Berezin} {Integration} on {Homogeneous} {Supermanifolds}},
     journal = {Journal of Lie theory},
     pages = {65--91},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a5/}
}
TY  - JOUR
AU  - A. Alldridge
AU  - J. Hilgert 
TI  - Invariant Berezin Integration on Homogeneous Supermanifolds
JO  - Journal of Lie theory
PY  - 2010
SP  - 65
EP  - 91
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a5/
ID  - JLT_2010_20_1_JLT_2010_20_1_a5
ER  - 
%0 Journal Article
%A A. Alldridge
%A J. Hilgert 
%T Invariant Berezin Integration on Homogeneous Supermanifolds
%J Journal of Lie theory
%D 2010
%P 65-91
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a5/
%F JLT_2010_20_1_JLT_2010_20_1_a5
A. Alldridge; J. Hilgert . Invariant Berezin Integration on Homogeneous Supermanifolds. Journal of Lie theory, Tome 20 (2010) no. 1, pp. 65-91. http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a5/