On Invariants of a Set of Elements of a Semisimple Lie Algebra
Journal of Lie theory, Tome 20 (2010) no. 1, pp. 17-3.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\h{{\frak h}} \def\C{\mathbb{C}} Let $G$ be a complex reductive algebraic group, $\g$ its Lie algebra and $\h$ a reductive subalgebra of $\g$, $n$ a positive integer. Consider the diagonal actions $G:\g^n, N_G(\h):\h^n$. We study a connection between the algebra $\C[\h^n]^{N_G(\h)}$ and its subalgebra consisting of restrictions to $\h^n$ of elements of $\C[\g^n]^G$.
Classification : 17B20, 14R20, 14L30
Mots-clés : Semisimple Lie algebras, conjugacy of embeddings, invariants of sets of elements in Lie algebras
@article{JLT_2010_20_1_JLT_2010_20_1_a2,
     author = {I. Losev },
     title = {On {Invariants} of a {Set} of {Elements} of a {Semisimple} {Lie} {Algebra}},
     journal = {Journal of Lie theory},
     pages = {17--3},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a2/}
}
TY  - JOUR
AU  - I. Losev 
TI  - On Invariants of a Set of Elements of a Semisimple Lie Algebra
JO  - Journal of Lie theory
PY  - 2010
SP  - 17
EP  - 3
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a2/
ID  - JLT_2010_20_1_JLT_2010_20_1_a2
ER  - 
%0 Journal Article
%A I. Losev 
%T On Invariants of a Set of Elements of a Semisimple Lie Algebra
%J Journal of Lie theory
%D 2010
%P 17-3
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a2/
%F JLT_2010_20_1_JLT_2010_20_1_a2
I. Losev . On Invariants of a Set of Elements of a Semisimple Lie Algebra. Journal of Lie theory, Tome 20 (2010) no. 1, pp. 17-3. http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a2/