A Combinatorial Basis for the Free Lie Algebra of the Labelled Rooted Trees
Journal of Lie theory, Tome 20 (2010) no. 1, pp. 3-15
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\calT{{\cal T}} \def\calF{{\cal F}} \def\Lie{{\cal {L}}{\it ie}} \def\N{{\Bbb N}} The pre-Lie operad is an operad structure on the species $\calT$ of labelled rooted trees. A result of F. Chapoton shows that the pre-Lie operad is a free twisted Lie algebra over a field of characteristic zero, that is $\calT = \Lie \circ \calF$ for some species $\calF$. Indeed Chapoton proves that any section of the indecomposables of the pre-Lie operad, viewed as a twisted Lie algebra, gives such a species $\calF$. \par In this paper, we first construct an explicit vector space basis of $\calF[S]$ when $S$ is a linearly ordered set. We deduce the associated explicit species $\calF$, solution to the equation $\calT = \Lie \circ \calF$. As a corollary the graded vector space $(\calF[\{1,\ldots,n\}])_{n\in\N}$ forms a sub non-symmetric operad of the pre-Lie operad $\calT$.
Classification :
18D, 05E, 17B
Mots-clés : Free Lie algebra, rooted tree, pre-Lie operad, Lyndon word
Mots-clés : Free Lie algebra, rooted tree, pre-Lie operad, Lyndon word
@article{JLT_2010_20_1_JLT_2010_20_1_a1,
author = {N. Bergeron and M. Livernet },
title = {A {Combinatorial} {Basis} for the {Free} {Lie} {Algebra} of the {Labelled} {Rooted} {Trees}},
journal = {Journal of Lie theory},
pages = {3--15},
year = {2010},
volume = {20},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a1/}
}
TY - JOUR AU - N. Bergeron AU - M. Livernet TI - A Combinatorial Basis for the Free Lie Algebra of the Labelled Rooted Trees JO - Journal of Lie theory PY - 2010 SP - 3 EP - 15 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a1/ ID - JLT_2010_20_1_JLT_2010_20_1_a1 ER -
N. Bergeron; M. Livernet . A Combinatorial Basis for the Free Lie Algebra of the Labelled Rooted Trees. Journal of Lie theory, Tome 20 (2010) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a1/