A Combinatorial Basis for the Free Lie Algebra of the Labelled Rooted Trees
Journal of Lie theory, Tome 20 (2010) no. 1, pp. 3-15.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\calT{{\cal T}} \def\calF{{\cal F}} \def\Lie{{\cal {L}}{\it ie}} \def\N{{\Bbb N}} The pre-Lie operad is an operad structure on the species $\calT$ of labelled rooted trees. A result of F. Chapoton shows that the pre-Lie operad is a free twisted Lie algebra over a field of characteristic zero, that is $\calT = \Lie \circ \calF$ for some species $\calF$. Indeed Chapoton proves that any section of the indecomposables of the pre-Lie operad, viewed as a twisted Lie algebra, gives such a species $\calF$. \par In this paper, we first construct an explicit vector space basis of $\calF[S]$ when $S$ is a linearly ordered set. We deduce the associated explicit species $\calF$, solution to the equation $\calT = \Lie \circ \calF$. As a corollary the graded vector space $(\calF[\{1,\ldots,n\}])_{n\in\N}$ forms a sub non-symmetric operad of the pre-Lie operad $\calT$.
Classification : 18D, 05E, 17B
Mots-clés : Free Lie algebra, rooted tree, pre-Lie operad, Lyndon word
@article{JLT_2010_20_1_JLT_2010_20_1_a1,
     author = {N. Bergeron and M. Livernet },
     title = {A {Combinatorial} {Basis} for the {Free} {Lie} {Algebra} of the {Labelled} {Rooted} {Trees}},
     journal = {Journal of Lie theory},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a1/}
}
TY  - JOUR
AU  - N. Bergeron
AU  - M. Livernet 
TI  - A Combinatorial Basis for the Free Lie Algebra of the Labelled Rooted Trees
JO  - Journal of Lie theory
PY  - 2010
SP  - 3
EP  - 15
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a1/
ID  - JLT_2010_20_1_JLT_2010_20_1_a1
ER  - 
%0 Journal Article
%A N. Bergeron
%A M. Livernet 
%T A Combinatorial Basis for the Free Lie Algebra of the Labelled Rooted Trees
%J Journal of Lie theory
%D 2010
%P 3-15
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a1/
%F JLT_2010_20_1_JLT_2010_20_1_a1
N. Bergeron; M. Livernet . A Combinatorial Basis for the Free Lie Algebra of the Labelled Rooted Trees. Journal of Lie theory, Tome 20 (2010) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/JLT_2010_20_1_JLT_2010_20_1_a1/