Invariant Polynomials for Multiplicity Free Actions
Journal of Lie theory, Tome 19 (2009) no. 4, pp. 771-795.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\C{{\Bbb C}} \def\R{{\Bbb R}} \def\HH{{\Bbb H}} This work concerns linear multiplicity free actions of the complex groups $G_\C=GL(n,\C)$, $GL(n,\C)\times GL(n,\C)$ and $GL(2n,\C)$ on the vector spaces $V=Sym(n,\C)$, $M_n(\C)$ and $Skew(2n,\C)$. We relate the canonical invariants in $\C[V \oplus V^*]$ to spherical functions for Riemannian symmetric pairs $(G,K)$ where $G=GL(n,\R)$, $GL(n,\C)$ or $GL(n,\HH)$ respectively. These in turn can be expressed using three families of classical zonal polynomials. We use this fact to derive a combinatorial algorithm for the generalized binomial coefficients in each case. Many of these results were obtained previously by Knop and Sahi using different methods.
Classification : 20G05, 13A50, 05E15
Mots-clés : Multiplicity free actions, invariant theory, symmetric functions
@article{JLT_2009_19_4_JLT_2009_19_4_a8,
     author = {C. Benson and R. M. Howe and G. Ratcliff },
     title = {Invariant {Polynomials} for {Multiplicity} {Free} {Actions}},
     journal = {Journal of Lie theory},
     pages = {771--795},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_4_JLT_2009_19_4_a8/}
}
TY  - JOUR
AU  - C. Benson
AU  - R. M. Howe
AU  - G. Ratcliff 
TI  - Invariant Polynomials for Multiplicity Free Actions
JO  - Journal of Lie theory
PY  - 2009
SP  - 771
EP  - 795
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2009_19_4_JLT_2009_19_4_a8/
ID  - JLT_2009_19_4_JLT_2009_19_4_a8
ER  - 
%0 Journal Article
%A C. Benson
%A R. M. Howe
%A G. Ratcliff 
%T Invariant Polynomials for Multiplicity Free Actions
%J Journal of Lie theory
%D 2009
%P 771-795
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2009_19_4_JLT_2009_19_4_a8/
%F JLT_2009_19_4_JLT_2009_19_4_a8
C. Benson; R. M. Howe; G. Ratcliff . Invariant Polynomials for Multiplicity Free Actions. Journal of Lie theory, Tome 19 (2009) no. 4, pp. 771-795. http://geodesic.mathdoc.fr/item/JLT_2009_19_4_JLT_2009_19_4_a8/