About the Relation between Multiplicity Free and Strong Multiplicity Free
Journal of Lie theory, Tome 19 (2009) no. 4, pp. 661-67
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $G$ be a unimodular Lie group with finitely many connected components and let $H$ be a closed unimodular subgroup of $G$. Let $\pi$ be an irreducible unitary representation of $G$ on $\cal H$ and $\tau$ one of $H$ on $V$. Denote by ${\rm Hom}_H\, ({\cal H}_\infty ,V)$ the vector space of continuous linear mappings ${\cal H}_\infty\to V$ that commute with the $H$-actions. Set ${\rm m}\, (\pi,\, \tau )={\rm dim}\, {\rm Hom}_H\, ({\cal H}_\infty ,V)$. The pair $(G,H)$ is called a multiplicity free pair if ${\rm m}\, (\pi,\,\tau )\leq 1$ for all $\pi$ and $\tau$. We show: if every $\pi$ has a distribution character, then $(G,H)$ is a multiplicity free pair if and only if $(G\times H,\, {\rm diag}\, (H\times H))$ is a generalized Gelfand pair.
Classification :
4301, 4302, 43A85, 22Dxx
Mots-clés : Gelfand pair, multiplicity free, strong multiplicity free
Mots-clés : Gelfand pair, multiplicity free, strong multiplicity free
@article{JLT_2009_19_4_JLT_2009_19_4_a1,
author = {G. van Dijk },
title = {About the {Relation} between {Multiplicity} {Free} and {Strong} {Multiplicity} {Free}},
journal = {Journal of Lie theory},
pages = {661--67},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_4_JLT_2009_19_4_a1/}
}
G. van Dijk . About the Relation between Multiplicity Free and Strong Multiplicity Free. Journal of Lie theory, Tome 19 (2009) no. 4, pp. 661-67. http://geodesic.mathdoc.fr/item/JLT_2009_19_4_JLT_2009_19_4_a1/