Lie Bialgebras on k3 and Lagrange Varieties
Journal of Lie theory, Tome 19 (2009) no. 4, pp. 639-659
Voir la notice de l'article provenant de la source Heldermann Verlag
Lie bialgebras on k3 and the corresponding Lagrange varieties are classified by means of a pair of quadratic forms on k4, where k is a field whose characteristic is not 2. It turns out that any Lagrange variety is composed of two (possibly degenerate) quadratic surfaces in kP3 defined by the above quadratic forms respectively.
Classification :
17B62, 17B66, 53D17
Mots-clés : Lie bialgebra, Lagrange subalgebra
Mots-clés : Lie bialgebra, Lagrange subalgebra
@article{JLT_2009_19_4_JLT_2009_19_4_a0,
author = {W. Hong and Z. Liu },
title = {Lie {Bialgebras} on <b>k</b>\protect\textsuperscript{3} and {Lagrange} {Varieties}},
journal = {Journal of Lie theory},
pages = {639--659},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_4_JLT_2009_19_4_a0/}
}
W. Hong; Z. Liu . Lie Bialgebras on k3 and Lagrange Varieties. Journal of Lie theory, Tome 19 (2009) no. 4, pp. 639-659. http://geodesic.mathdoc.fr/item/JLT_2009_19_4_JLT_2009_19_4_a0/