Lie Quasi-States
Journal of Lie theory, Tome 19 (2009) no. 3, pp. 613-637.

Voir la notice de l'article provenant de la source Heldermann Verlag

Lie quasi-states on a real Lie algebra are functionals which are linear on any abelian subalgebra. We show that on the symplectic Lie algebra of rank at least 3 there is only one continuous non-linear Lie quasi-state (up to a scalar factor, modulo linear functionals). It is related to the asymptotic Maslov index of paths of symplectic matrices.
Classification : 53D12, 17B99, 15A27, 15B99
Mots-clés : Quasi-state, Lie algebra, Maslov index, Gleason theorem
@article{JLT_2009_19_3_JLT_2009_19_3_a9,
     author = {M. Entov and L. Polterovich },
     title = {Lie {Quasi-States}},
     journal = {Journal of Lie theory},
     pages = {613--637},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a9/}
}
TY  - JOUR
AU  - M. Entov
AU  - L. Polterovich 
TI  - Lie Quasi-States
JO  - Journal of Lie theory
PY  - 2009
SP  - 613
EP  - 637
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a9/
ID  - JLT_2009_19_3_JLT_2009_19_3_a9
ER  - 
%0 Journal Article
%A M. Entov
%A L. Polterovich 
%T Lie Quasi-States
%J Journal of Lie theory
%D 2009
%P 613-637
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a9/
%F JLT_2009_19_3_JLT_2009_19_3_a9
M. Entov; L. Polterovich . Lie Quasi-States. Journal of Lie theory, Tome 19 (2009) no. 3, pp. 613-637. http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a9/