Lie Quasi-States
Journal of Lie theory, Tome 19 (2009) no. 3, pp. 613-637
Cet article a éte moissonné depuis la source Heldermann Verlag
Lie quasi-states on a real Lie algebra are functionals which are linear on any abelian subalgebra. We show that on the symplectic Lie algebra of rank at least 3 there is only one continuous non-linear Lie quasi-state (up to a scalar factor, modulo linear functionals). It is related to the asymptotic Maslov index of paths of symplectic matrices.
Classification :
53D12, 17B99, 15A27, 15B99
Mots-clés : Quasi-state, Lie algebra, Maslov index, Gleason theorem
Mots-clés : Quasi-state, Lie algebra, Maslov index, Gleason theorem
@article{JLT_2009_19_3_JLT_2009_19_3_a9,
author = {M. Entov and L. Polterovich },
title = {Lie {Quasi-States}},
journal = {Journal of Lie theory},
pages = {613--637},
year = {2009},
volume = {19},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a9/}
}
M. Entov; L. Polterovich . Lie Quasi-States. Journal of Lie theory, Tome 19 (2009) no. 3, pp. 613-637. http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a9/