Factoring Tilting Modules for Algebraic Groups
Journal of Lie theory, Tome 19 (2009) no. 3, pp. 531-535.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let G be a semisimple, simply-connected algebraic group over an algebraically closed field of characteristic p > 0. We observe that the tensor product of the Steinberg module with a minuscule module is always indecomposable tilting. Although quite easy to prove, this fact does not seem to have been observed before. It has the following consequence: If p ≥ 2h-2 and a given tilting module has highest weight p-adically close to the r-th Steinberg weight, then the tilting module is isomorphic to a tensor product of two simple modules, usually in many ways.
Classification : 20G15, 20G05
Mots-clés : Tilting modules, tensor products
@article{JLT_2009_19_3_JLT_2009_19_3_a5,
     author = {S. R. Doty },
     title = {Factoring {Tilting} {Modules} for {Algebraic} {Groups}},
     journal = {Journal of Lie theory},
     pages = {531--535},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a5/}
}
TY  - JOUR
AU  - S. R. Doty 
TI  - Factoring Tilting Modules for Algebraic Groups
JO  - Journal of Lie theory
PY  - 2009
SP  - 531
EP  - 535
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a5/
ID  - JLT_2009_19_3_JLT_2009_19_3_a5
ER  - 
%0 Journal Article
%A S. R. Doty 
%T Factoring Tilting Modules for Algebraic Groups
%J Journal of Lie theory
%D 2009
%P 531-535
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a5/
%F JLT_2009_19_3_JLT_2009_19_3_a5
S. R. Doty . Factoring Tilting Modules for Algebraic Groups. Journal of Lie theory, Tome 19 (2009) no. 3, pp. 531-535. http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a5/