Vector Invariants of a Class of Pseudoreflection Groups and Multisymmetric Syzygies
Journal of Lie theory, Tome 19 (2009) no. 3, pp. 507-525.

Voir la notice de l'article provenant de la source Heldermann Verlag

First and second fundamental theorems are given for polynomial invariants of a class of pseudo-reflection groups (including the Weyl groups of type Bn), under the assumption that the order of the group is invertible in the base field. As a special case, a finite presentation of the algebra of multisymmetric polynomials is obtained. Reducedness of the invariant commuting scheme is proved as a by-product. The algebra of multisymmetric polynomials over an arbitrary base ring is revisited.
Classification : 13A50, 14L30, 20G05
Mots-clés : Multisymmetric polynomials, reflection groups, polynomial invariant, second fundamental theorem, ideal of relations, trace identities
@article{JLT_2009_19_3_JLT_2009_19_3_a3,
     author = {M. Domokos },
     title = {Vector {Invariants} of a {Class} of {Pseudoreflection} {Groups} and {Multisymmetric} {Syzygies}},
     journal = {Journal of Lie theory},
     pages = {507--525},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a3/}
}
TY  - JOUR
AU  - M. Domokos 
TI  - Vector Invariants of a Class of Pseudoreflection Groups and Multisymmetric Syzygies
JO  - Journal of Lie theory
PY  - 2009
SP  - 507
EP  - 525
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a3/
ID  - JLT_2009_19_3_JLT_2009_19_3_a3
ER  - 
%0 Journal Article
%A M. Domokos 
%T Vector Invariants of a Class of Pseudoreflection Groups and Multisymmetric Syzygies
%J Journal of Lie theory
%D 2009
%P 507-525
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a3/
%F JLT_2009_19_3_JLT_2009_19_3_a3
M. Domokos . Vector Invariants of a Class of Pseudoreflection Groups and Multisymmetric Syzygies. Journal of Lie theory, Tome 19 (2009) no. 3, pp. 507-525. http://geodesic.mathdoc.fr/item/JLT_2009_19_3_JLT_2009_19_3_a3/