Lie Algebras of Hamiltonian Vector Fields and Symplectic Manifolds
Journal of Lie theory, Tome 18 (2008) no. 4, pp. 897-914.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\R{{\Bbb R}} We construct a local characteristic map to a symplectic manifold $M$ via certain cohomology groups of Hamiltonian vector fields. For each $p\in M$, the Leibniz cohomology of the Hamiltonian vector fields on $\R^{2n}$ maps to the Leibniz cohomology of all Hamiltonian vector fields on $M$. For a particular extension $\g_n$ of the symplectic Lie algebra, the Leibniz cohomology of $\g_n$ is shown to be an exterior algebra on the canonical symplectic two-form. The Leibniz cohomology of this extension is then a direct summand of the Leibniz cohomology of all Hamiltonian vector fields on $\R^{2n}$.
Classification : 17B56, 53D05, 17A32
Mots-clés : Leibniz homology, symplectic manifolds, symplectic invariants
@article{JLT_2008_18_4_JLT_2008_18_4_a8,
     author = {J. M. Lodder },
     title = {Lie {Algebras} of {Hamiltonian} {Vector} {Fields} and {Symplectic} {Manifolds}},
     journal = {Journal of Lie theory},
     pages = {897--914},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a8/}
}
TY  - JOUR
AU  - J. M. Lodder 
TI  - Lie Algebras of Hamiltonian Vector Fields and Symplectic Manifolds
JO  - Journal of Lie theory
PY  - 2008
SP  - 897
EP  - 914
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a8/
ID  - JLT_2008_18_4_JLT_2008_18_4_a8
ER  - 
%0 Journal Article
%A J. M. Lodder 
%T Lie Algebras of Hamiltonian Vector Fields and Symplectic Manifolds
%J Journal of Lie theory
%D 2008
%P 897-914
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a8/
%F JLT_2008_18_4_JLT_2008_18_4_a8
J. M. Lodder . Lie Algebras of Hamiltonian Vector Fields and Symplectic Manifolds. Journal of Lie theory, Tome 18 (2008) no. 4, pp. 897-914. http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a8/