Lie Algebras of Hamiltonian Vector Fields and Symplectic Manifolds
Journal of Lie theory, Tome 18 (2008) no. 4, pp. 897-914
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\g{{\frak g}} \def\R{{\Bbb R}} We construct a local characteristic map to a symplectic manifold $M$ via certain cohomology groups of Hamiltonian vector fields. For each $p\in M$, the Leibniz cohomology of the Hamiltonian vector fields on $\R^{2n}$ maps to the Leibniz cohomology of all Hamiltonian vector fields on $M$. For a particular extension $\g_n$ of the symplectic Lie algebra, the Leibniz cohomology of $\g_n$ is shown to be an exterior algebra on the canonical symplectic two-form. The Leibniz cohomology of this extension is then a direct summand of the Leibniz cohomology of all Hamiltonian vector fields on $\R^{2n}$.
Classification :
17B56, 53D05, 17A32
Mots-clés : Leibniz homology, symplectic manifolds, symplectic invariants
Mots-clés : Leibniz homology, symplectic manifolds, symplectic invariants
@article{JLT_2008_18_4_JLT_2008_18_4_a8,
author = {J. M. Lodder },
title = {Lie {Algebras} of {Hamiltonian} {Vector} {Fields} and {Symplectic} {Manifolds}},
journal = {Journal of Lie theory},
pages = {897--914},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a8/}
}
J. M. Lodder . Lie Algebras of Hamiltonian Vector Fields and Symplectic Manifolds. Journal of Lie theory, Tome 18 (2008) no. 4, pp. 897-914. http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a8/