A Manifold Structure for the Group of Orbifold Diffeomorphisms of a Smooth Orbifold
Journal of Lie theory, Tome 18 (2008) no. 4, pp. 979-1007
Voir la notice de l'article provenant de la source Heldermann Verlag
For a compact, smooth $C^r$ orbifold (without boundary), we show that the topological structure of the orbifold diffeomorphism group is a Banach manifold for $1\le r\infty$ and a Fr\'echet manifold if $r=\infty$. In each case, the local model is the separable Banach (Fr\'echet) space of $C^r$, respectively, $C^\infty$ orbisections of the tangent orbibundle.
Classification :
57S05, 22F50, 54H99, 22E65
Mots-clés : Orbifolds, diffeomorphism groups, topological transformation groups, homeomorphism groups
Mots-clés : Orbifolds, diffeomorphism groups, topological transformation groups, homeomorphism groups
@article{JLT_2008_18_4_JLT_2008_18_4_a15,
author = {J. E. Borzellino and V. Brunsden },
title = {A {Manifold} {Structure} for the {Group} of {Orbifold} {Diffeomorphisms} of a {Smooth} {Orbifold}},
journal = {Journal of Lie theory},
pages = {979--1007},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a15/}
}
TY - JOUR AU - J. E. Borzellino AU - V. Brunsden TI - A Manifold Structure for the Group of Orbifold Diffeomorphisms of a Smooth Orbifold JO - Journal of Lie theory PY - 2008 SP - 979 EP - 1007 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a15/ ID - JLT_2008_18_4_JLT_2008_18_4_a15 ER -
%0 Journal Article %A J. E. Borzellino %A V. Brunsden %T A Manifold Structure for the Group of Orbifold Diffeomorphisms of a Smooth Orbifold %J Journal of Lie theory %D 2008 %P 979-1007 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a15/ %F JLT_2008_18_4_JLT_2008_18_4_a15
J. E. Borzellino; V. Brunsden . A Manifold Structure for the Group of Orbifold Diffeomorphisms of a Smooth Orbifold. Journal of Lie theory, Tome 18 (2008) no. 4, pp. 979-1007. http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a15/