On the Decomposition of L2(Γ \ G) in the Cocompact Case
Journal of Lie theory, Tome 18 (2008) no. 4, pp. 937-949
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $G$ be a semisimple Lie group with a finite center and finitely many connected components. For example, $G$ could be a group of $\mathbb R$--points of a semisimple Zariski connected algebraic group defined over $\mathbb Q$. Let $\Gamma$ be a discrete cocompact subgroup of $G$. Using the spectral decomposition of compactly supported Poincar\' e series we discuss the existence of various types of irreducible unitary subrepresentations of $L^2(\Gamma\setminus G)$.
Classification :
22Exx, 11F03
Mots-clés : Poincare series, cocompact quotients
Mots-clés : Poincare series, cocompact quotients
@article{JLT_2008_18_4_JLT_2008_18_4_a12,
author = {G. Muic },
title = {On the {Decomposition} of {L\protect\textsuperscript{2}(\ensuremath{\Gamma}} \ {G)} in the {Cocompact} {Case}},
journal = {Journal of Lie theory},
pages = {937--949},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a12/}
}
G. Muic . On the Decomposition of L2(Γ \ G) in the Cocompact Case. Journal of Lie theory, Tome 18 (2008) no. 4, pp. 937-949. http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a12/