On the Decomposition of L2(Γ \ G) in the Cocompact Case
Journal of Lie theory, Tome 18 (2008) no. 4, pp. 937-949.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $G$ be a semisimple Lie group with a finite center and finitely many connected components. For example, $G$ could be a group of $\mathbb R$--points of a semisimple Zariski connected algebraic group defined over $\mathbb Q$. Let $\Gamma$ be a discrete cocompact subgroup of $G$. Using the spectral decomposition of compactly supported Poincar\' e series we discuss the existence of various types of irreducible unitary subrepresentations of $L^2(\Gamma\setminus G)$.
Classification : 22Exx, 11F03
Mots-clés : Poincare series, cocompact quotients
@article{JLT_2008_18_4_JLT_2008_18_4_a12,
     author = {G. Muic },
     title = {On the {Decomposition} of {L\protect\textsuperscript{2}(\ensuremath{\Gamma}} \ {G)} in the {Cocompact} {Case}},
     journal = {Journal of Lie theory},
     pages = {937--949},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a12/}
}
TY  - JOUR
AU  - G. Muic 
TI  - On the Decomposition of L2(Γ \ G) in the Cocompact Case
JO  - Journal of Lie theory
PY  - 2008
SP  - 937
EP  - 949
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a12/
ID  - JLT_2008_18_4_JLT_2008_18_4_a12
ER  - 
%0 Journal Article
%A G. Muic 
%T On the Decomposition of L2(Γ \ G) in the Cocompact Case
%J Journal of Lie theory
%D 2008
%P 937-949
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a12/
%F JLT_2008_18_4_JLT_2008_18_4_a12
G. Muic . On the Decomposition of L2(Γ \ G) in the Cocompact Case. Journal of Lie theory, Tome 18 (2008) no. 4, pp. 937-949. http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a12/