A Nonsmooth Continuous Unitary Representation of a Banach-Lie Group
Journal of Lie theory, Tome 18 (2008) no. 4, pp. 933-936
Voir la notice de l'article provenant de la source Heldermann Verlag
We show that the representation of the additive group of the Hilbert space $L^2([0,1],{\mathbb R})$ on $L^2([0,1], {\mathbb C})$ given by the multiplication operators $\pi(f) := e^{if}$ is continuous but its space of smooth vectors is trivial. This example shows that a continuous unitary representation of an infinite dimensional Lie group need not be smooth.
Classification :
22E65, 22E45
Mots-clés : Infinite-dimensional Lie group, unitary representation, smooth vector
Mots-clés : Infinite-dimensional Lie group, unitary representation, smooth vector
@article{JLT_2008_18_4_JLT_2008_18_4_a11,
author = {D. Beltita and K.-H. Neeb },
title = {A {Nonsmooth} {Continuous} {Unitary} {Representation} of a {Banach-Lie} {Group}},
journal = {Journal of Lie theory},
pages = {933--936},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a11/}
}
TY - JOUR AU - D. Beltita AU - K.-H. Neeb TI - A Nonsmooth Continuous Unitary Representation of a Banach-Lie Group JO - Journal of Lie theory PY - 2008 SP - 933 EP - 936 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a11/ ID - JLT_2008_18_4_JLT_2008_18_4_a11 ER -
D. Beltita; K.-H. Neeb . A Nonsmooth Continuous Unitary Representation of a Banach-Lie Group. Journal of Lie theory, Tome 18 (2008) no. 4, pp. 933-936. http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a11/