A Nonsmooth Continuous Unitary Representation of a Banach-Lie Group
Journal of Lie theory, Tome 18 (2008) no. 4, pp. 933-936.

Voir la notice de l'article provenant de la source Heldermann Verlag

We show that the representation of the additive group of the Hilbert space $L^2([0,1],{\mathbb R})$ on $L^2([0,1], {\mathbb C})$ given by the multiplication operators $\pi(f) := e^{if}$ is continuous but its space of smooth vectors is trivial. This example shows that a continuous unitary representation of an infinite dimensional Lie group need not be smooth.
Classification : 22E65, 22E45
Mots-clés : Infinite-dimensional Lie group, unitary representation, smooth vector
@article{JLT_2008_18_4_JLT_2008_18_4_a11,
     author = {D. Beltita and K.-H. Neeb },
     title = {A {Nonsmooth} {Continuous} {Unitary} {Representation} of a {Banach-Lie} {Group}},
     journal = {Journal of Lie theory},
     pages = {933--936},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a11/}
}
TY  - JOUR
AU  - D. Beltita
AU  - K.-H. Neeb 
TI  - A Nonsmooth Continuous Unitary Representation of a Banach-Lie Group
JO  - Journal of Lie theory
PY  - 2008
SP  - 933
EP  - 936
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a11/
ID  - JLT_2008_18_4_JLT_2008_18_4_a11
ER  - 
%0 Journal Article
%A D. Beltita
%A K.-H. Neeb 
%T A Nonsmooth Continuous Unitary Representation of a Banach-Lie Group
%J Journal of Lie theory
%D 2008
%P 933-936
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a11/
%F JLT_2008_18_4_JLT_2008_18_4_a11
D. Beltita; K.-H. Neeb . A Nonsmooth Continuous Unitary Representation of a Banach-Lie Group. Journal of Lie theory, Tome 18 (2008) no. 4, pp. 933-936. http://geodesic.mathdoc.fr/item/JLT_2008_18_4_JLT_2008_18_4_a11/