Topological Properties of Ad-Semisimple Conjugacy Classes in Lie Groups
Journal of Lie theory, Tome 18 (2008) no. 3, pp. 541-554.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove that every connected component of the zero locus in a connected Lie group G of any real polynomial without multiple roots is a conjugacy class. As applications, we prove that any Ad-semisimple conjugacy class C of G is a closed embedded submanifold, and that for any connected subgroup H of G, every connected component of the intersection of C and H is a conjugacy class of H. Corresponding results for adjoint orbits in real Lie algebras are also proved.
Classification : 22E15, 17B05, 57S25
Mots-clés : Lie group, Lie algebra, conjugacy class, adjoint orbit
@article{JLT_2008_18_3_JLT_2008_18_3_a3,
     author = {J. An },
     title = {Topological {Properties} of {Ad-Semisimple} {Conjugacy} {Classes} in {Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {541--554},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a3/}
}
TY  - JOUR
AU  - J. An 
TI  - Topological Properties of Ad-Semisimple Conjugacy Classes in Lie Groups
JO  - Journal of Lie theory
PY  - 2008
SP  - 541
EP  - 554
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a3/
ID  - JLT_2008_18_3_JLT_2008_18_3_a3
ER  - 
%0 Journal Article
%A J. An 
%T Topological Properties of Ad-Semisimple Conjugacy Classes in Lie Groups
%J Journal of Lie theory
%D 2008
%P 541-554
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a3/
%F JLT_2008_18_3_JLT_2008_18_3_a3
J. An . Topological Properties of Ad-Semisimple Conjugacy Classes in Lie Groups. Journal of Lie theory, Tome 18 (2008) no. 3, pp. 541-554. http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a3/