Topological Properties of Ad-Semisimple Conjugacy Classes in Lie Groups
Journal of Lie theory, Tome 18 (2008) no. 3, pp. 541-554
Cet article a éte moissonné depuis la source Heldermann Verlag
We prove that every connected component of the zero locus in a connected Lie group G of any real polynomial without multiple roots is a conjugacy class. As applications, we prove that any Ad-semisimple conjugacy class C of G is a closed embedded submanifold, and that for any connected subgroup H of G, every connected component of the intersection of C and H is a conjugacy class of H. Corresponding results for adjoint orbits in real Lie algebras are also proved.
Classification :
22E15, 17B05, 57S25
Mots-clés : Lie group, Lie algebra, conjugacy class, adjoint orbit
Mots-clés : Lie group, Lie algebra, conjugacy class, adjoint orbit
@article{JLT_2008_18_3_JLT_2008_18_3_a3,
author = {J. An },
title = {Topological {Properties} of {Ad-Semisimple} {Conjugacy} {Classes} in {Lie} {Groups}},
journal = {Journal of Lie theory},
pages = {541--554},
year = {2008},
volume = {18},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a3/}
}
J. An . Topological Properties of Ad-Semisimple Conjugacy Classes in Lie Groups. Journal of Lie theory, Tome 18 (2008) no. 3, pp. 541-554. http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a3/