On the Dimension of the Sheets of a Reductive Lie Algebra
Journal of Lie theory, Tome 18 (2008) no. 3, pp. 671-696
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\g{{\frak g}} \def\l{{\frak l}} Let $\g$ be a complex finite dimensional Lie algebra and $G$ its adjoint group. Following a suggestion of A. A. Kirillov, we investigate the dimension of the subset of linear forms $f\in\g^*$ whose coadjoint orbit has dimension $2m$, for $m\in\mathbb{N}$. In this paper we focus on the reductive case. In this case the problem reduces to the computation of the dimension of the sheets of $\g$. These sheets are known to be parameterized by the pairs $(\l, {\cal O}_\l)$, up to $G$-conjugacy class, consisting of a Levi subalgebra $\l$ of $\g$ and a rigid nilpotent orbit ${\cal O}_\l$ in $\l$. By using this parametrization, we provide the dimension of the above subsets for any $m$.
Classification :
14A10, 14L17, 22E20, 22E46
Mots-clés : Reductive Lie algebra, coadjoint orbit, sheet, index, Jordan class, induced nilpotent orbit, rigid nilpotent orbit
Mots-clés : Reductive Lie algebra, coadjoint orbit, sheet, index, Jordan class, induced nilpotent orbit, rigid nilpotent orbit
@article{JLT_2008_18_3_JLT_2008_18_3_a11,
author = {A. Moreau },
title = {On the {Dimension} of the {Sheets} of a {Reductive} {Lie} {Algebra}},
journal = {Journal of Lie theory},
pages = {671--696},
year = {2008},
volume = {18},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a11/}
}
A. Moreau . On the Dimension of the Sheets of a Reductive Lie Algebra. Journal of Lie theory, Tome 18 (2008) no. 3, pp. 671-696. http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a11/