On the Dimension of the Sheets of a Reductive Lie Algebra
Journal of Lie theory, Tome 18 (2008) no. 3, pp. 671-696.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\g{{\frak g}} \def\l{{\frak l}} Let $\g$ be a complex finite dimensional Lie algebra and $G$ its adjoint group. Following a suggestion of A. A. Kirillov, we investigate the dimension of the subset of linear forms $f\in\g^*$ whose coadjoint orbit has dimension $2m$, for $m\in\mathbb{N}$. In this paper we focus on the reductive case. In this case the problem reduces to the computation of the dimension of the sheets of $\g$. These sheets are known to be parameterized by the pairs $(\l, {\cal O}_\l)$, up to $G$-conjugacy class, consisting of a Levi subalgebra $\l$ of $\g$ and a rigid nilpotent orbit ${\cal O}_\l$ in $\l$. By using this parametrization, we provide the dimension of the above subsets for any $m$.
Classification : 14A10, 14L17, 22E20, 22E46
Mots-clés : Reductive Lie algebra, coadjoint orbit, sheet, index, Jordan class, induced nilpotent orbit, rigid nilpotent orbit
@article{JLT_2008_18_3_JLT_2008_18_3_a11,
     author = {A. Moreau },
     title = {On the {Dimension} of the {Sheets} of a {Reductive} {Lie} {Algebra}},
     journal = {Journal of Lie theory},
     pages = {671--696},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a11/}
}
TY  - JOUR
AU  - A. Moreau 
TI  - On the Dimension of the Sheets of a Reductive Lie Algebra
JO  - Journal of Lie theory
PY  - 2008
SP  - 671
EP  - 696
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a11/
ID  - JLT_2008_18_3_JLT_2008_18_3_a11
ER  - 
%0 Journal Article
%A A. Moreau 
%T On the Dimension of the Sheets of a Reductive Lie Algebra
%J Journal of Lie theory
%D 2008
%P 671-696
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a11/
%F JLT_2008_18_3_JLT_2008_18_3_a11
A. Moreau . On the Dimension of the Sheets of a Reductive Lie Algebra. Journal of Lie theory, Tome 18 (2008) no. 3, pp. 671-696. http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a11/