Closedness of the Tangent Spaces to the Orbits of Proper Actions
Journal of Lie theory, Tome 18 (2008) no. 3, pp. 517-521
Voir la notice de l'article provenant de la source Heldermann Verlag
We show that for any proper action of a Banach-Lie group $G$ on a Banach manifold $M$, the corresponding tangent maps ${\frak g} \to T_x(M)$ have closed range for each $x \in M$, i.e., the tangent spaces of the orbits are closed. As a consequence, for each free proper action on a Hilbert manifold, the quotient $M/G$ carries a natural manifold structure.
Classification :
22E65, 58B25, 57E20
Mots-clés : Banach Lie group, Banach manifold, proper action
Mots-clés : Banach Lie group, Banach manifold, proper action
@article{JLT_2008_18_3_JLT_2008_18_3_a1,
author = {M. Jotz and K.-H. Neeb },
title = {Closedness of the {Tangent} {Spaces} to the {Orbits} of {Proper} {Actions}},
journal = {Journal of Lie theory},
pages = {517--521},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a1/}
}
TY - JOUR AU - M. Jotz AU - K.-H. Neeb TI - Closedness of the Tangent Spaces to the Orbits of Proper Actions JO - Journal of Lie theory PY - 2008 SP - 517 EP - 521 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a1/ ID - JLT_2008_18_3_JLT_2008_18_3_a1 ER -
M. Jotz; K.-H. Neeb . Closedness of the Tangent Spaces to the Orbits of Proper Actions. Journal of Lie theory, Tome 18 (2008) no. 3, pp. 517-521. http://geodesic.mathdoc.fr/item/JLT_2008_18_3_JLT_2008_18_3_a1/