On the Pro-Lie Group Theorem and the Closed Subgroup Theorem
Journal of Lie theory, Tome 18 (2008) no. 2, pp. 383-39
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $H$ and $M$ be closed normal subgroups of a pro-Lie group $G$ and assume that $H$ is connected and that $G/M$ is a Lie group. Then there is a closed normal subgroup $N$ of $G$ such that $N\subseteq M$, that $G/N$ is a Lie group, and that $HN$ is closed in $G$. As a consequence, $H/(H\cap N)\to HN/N$ is an isomorphism of Lie groups.
Classification :
22A05
Mots-clés : Pro-Lie groups, closed subgroup theorem
Mots-clés : Pro-Lie groups, closed subgroup theorem
@article{JLT_2008_18_2_JLT_2008_18_2_a8,
author = {K. H. Hofmann and S. A. Morris },
title = {On the {Pro-Lie} {Group} {Theorem} and the {Closed} {Subgroup} {Theorem}},
journal = {Journal of Lie theory},
pages = {383--39},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a8/}
}
TY - JOUR AU - K. H. Hofmann AU - S. A. Morris TI - On the Pro-Lie Group Theorem and the Closed Subgroup Theorem JO - Journal of Lie theory PY - 2008 SP - 383 EP - 39 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a8/ ID - JLT_2008_18_2_JLT_2008_18_2_a8 ER -
K. H. Hofmann; S. A. Morris . On the Pro-Lie Group Theorem and the Closed Subgroup Theorem. Journal of Lie theory, Tome 18 (2008) no. 2, pp. 383-39. http://geodesic.mathdoc.fr/item/JLT_2008_18_2_JLT_2008_18_2_a8/