Klein Geometries, Parabolic Geometries and Differential Equations of Finite Type
Journal of Lie theory, Tome 18 (2008) no. 1, pp. 67-82
Cet article a éte moissonné depuis la source Heldermann Verlag
We define the infinitesimal and geometric orders of an effective Klein geometry $G/H$. Using these concepts, we prove (i) For any integer $m\geq 2$, there exists an effective Klein geometry $G/H$ of infinitesimal order $m$ such that $G/H$ is a projective variety. (ii) An effective Klein geometry $G/H$ of geometric order $M$ defines a differential equation of order $M+1$ on $G/H$ whose global solution space is $G$.
Classification :
53C30
Mots-clés : Homogeneous space, jet
Mots-clés : Homogeneous space, jet
@article{JLT_2008_18_1_JLT_2008_18_1_a4,
author = {E. Abadoglu and E. Ortacgil and F. �zt�rk },
title = {Klein {Geometries,} {Parabolic} {Geometries} and {Differential} {Equations} of {Finite} {Type}},
journal = {Journal of Lie theory},
pages = {67--82},
year = {2008},
volume = {18},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a4/}
}
TY - JOUR AU - E. Abadoglu AU - E. Ortacgil AU - F. �zt�rk TI - Klein Geometries, Parabolic Geometries and Differential Equations of Finite Type JO - Journal of Lie theory PY - 2008 SP - 67 EP - 82 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a4/ ID - JLT_2008_18_1_JLT_2008_18_1_a4 ER -
E. Abadoglu; E. Ortacgil; F. �zt�rk . Klein Geometries, Parabolic Geometries and Differential Equations of Finite Type. Journal of Lie theory, Tome 18 (2008) no. 1, pp. 67-82. http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a4/