Klein Geometries, Parabolic Geometries and Differential Equations of Finite Type
Journal of Lie theory, Tome 18 (2008) no. 1, pp. 67-82.

Voir la notice de l'article provenant de la source Heldermann Verlag

We define the infinitesimal and geometric orders of an effective Klein geometry $G/H$. Using these concepts, we prove (i) For any integer $m\geq 2$, there exists an effective Klein geometry $G/H$ of infinitesimal order $m$ such that $G/H$ is a projective variety. (ii) An effective Klein geometry $G/H$ of geometric order $M$ defines a differential equation of order $M+1$ on $G/H$ whose global solution space is $G$.
Classification : 53C30
Mots-clés : Homogeneous space, jet
@article{JLT_2008_18_1_JLT_2008_18_1_a4,
     author = {E. Abadoglu and E. Ortacgil and F. �zt�rk },
     title = {Klein {Geometries,} {Parabolic} {Geometries} and {Differential} {Equations} of {Finite} {Type}},
     journal = {Journal of Lie theory},
     pages = {67--82},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a4/}
}
TY  - JOUR
AU  - E. Abadoglu
AU  - E. Ortacgil
AU  - F. �zt�rk 
TI  - Klein Geometries, Parabolic Geometries and Differential Equations of Finite Type
JO  - Journal of Lie theory
PY  - 2008
SP  - 67
EP  - 82
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a4/
ID  - JLT_2008_18_1_JLT_2008_18_1_a4
ER  - 
%0 Journal Article
%A E. Abadoglu
%A E. Ortacgil
%A F. �zt�rk 
%T Klein Geometries, Parabolic Geometries and Differential Equations of Finite Type
%J Journal of Lie theory
%D 2008
%P 67-82
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a4/
%F JLT_2008_18_1_JLT_2008_18_1_a4
E. Abadoglu; E. Ortacgil; F. �zt�rk . Klein Geometries, Parabolic Geometries and Differential Equations of Finite Type. Journal of Lie theory, Tome 18 (2008) no. 1, pp. 67-82. http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a4/