A Product for Harmonic Spinors on Reductive Homogeneous Spaces
Journal of Lie theory, Tome 18 (2008) no. 1, pp. 33-44.

Voir la notice de l'article provenant de la source Heldermann Verlag

We define a product for harmonic spinors on reductive homogeneous spaces. We give also some examples where harmonic spinors with coefficients in a module are expressed as a linear combination of products of harmonic spinors with coefficients in two other modules. One such example involves discrete series representations.
Classification : 22E47, 22F30, 43A85
Mots-clés : Reductive Lie group, Enright-Varadarajan module, Zuckerman translation functor, homogeneous space, harmonic spinor
@article{JLT_2008_18_1_JLT_2008_18_1_a2,
     author = {S. Mehdi and R. Parthasarathy },
     title = {A {Product} for {Harmonic} {Spinors} on {Reductive} {Homogeneous} {Spaces}},
     journal = {Journal of Lie theory},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a2/}
}
TY  - JOUR
AU  - S. Mehdi
AU  - R. Parthasarathy 
TI  - A Product for Harmonic Spinors on Reductive Homogeneous Spaces
JO  - Journal of Lie theory
PY  - 2008
SP  - 33
EP  - 44
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a2/
ID  - JLT_2008_18_1_JLT_2008_18_1_a2
ER  - 
%0 Journal Article
%A S. Mehdi
%A R. Parthasarathy 
%T A Product for Harmonic Spinors on Reductive Homogeneous Spaces
%J Journal of Lie theory
%D 2008
%P 33-44
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a2/
%F JLT_2008_18_1_JLT_2008_18_1_a2
S. Mehdi; R. Parthasarathy . A Product for Harmonic Spinors on Reductive Homogeneous Spaces. Journal of Lie theory, Tome 18 (2008) no. 1, pp. 33-44. http://geodesic.mathdoc.fr/item/JLT_2008_18_1_JLT_2008_18_1_a2/