Inner Ideals of Finitary Simple Lie Algebras
Journal of Lie theory, Tome 16 (2006) no. 1, pp. 97-114
Cet article a éte moissonné depuis la source Heldermann Verlag
Inner ideals of infinite dimensional finitary simple Lie algebras over a field of characteristic zero are described in geometric terms. We also study when these inner ideals are principal or minimal, and characterize those elements which are von Neumann regular. As a consequence we prove that any finitary central simple Lie algebra over a field of characteristic zero satisfies the descending chain condition on principal inner ideals. We also characterize when these algebras are Artinian, proving in particular that a finitary simple Lie algebra over an algebraically closed field of characteristic zero is Artinian if and only if it is finite dimensional. Because it is useful for our approach, we provide a characterization of the trace of a finite rank operator on a vector space over a division algebra which is intrinsic in the sense that it avoids imbeddings into finite matrices.
Classification :
17B60, 17B65, 17B70
Mots-clés : Finitary Lie algebra, inner ideal, von Neumann regular element
Mots-clés : Finitary Lie algebra, inner ideal, von Neumann regular element
@article{JLT_2006_16_1_JLT_2006_16_1_a8,
author = {A. F. Fern�ndez L�pez and E. Garc�a and M. G�mez Lozano },
title = {Inner {Ideals} of {Finitary} {Simple} {Lie} {Algebras}},
journal = {Journal of Lie theory},
pages = {97--114},
year = {2006},
volume = {16},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a8/}
}
TY - JOUR AU - A. F. Fern�ndez L�pez AU - E. Garc�a AU - M. G�mez Lozano TI - Inner Ideals of Finitary Simple Lie Algebras JO - Journal of Lie theory PY - 2006 SP - 97 EP - 114 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a8/ ID - JLT_2006_16_1_JLT_2006_16_1_a8 ER -
A. F. Fern�ndez L�pez; E. Garc�a; M. G�mez Lozano . Inner Ideals of Finitary Simple Lie Algebras. Journal of Lie theory, Tome 16 (2006) no. 1, pp. 97-114. http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a8/