On Exceptional Completions of Symmetric Varieties
Journal of Lie theory, Tome 16 (2006) no. 1, pp. 39-46.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $G$ be a simple group with an exceptional involution $\sigma$ having $H$ as fixed point set. We study the embedding of $G/H$ in the projective space ${\mathbb P}(V)$ for a simple $G$--module $V$ with a line fixed by $H$ but having no nonzero vector fixed by $H$. For a certain class of such modules $V$ we describe the closure of $G/H$ proving in particular that it is a smooth variety.
Classification : 14M17, 14L30
Mots-clés : Complete symmetric variety, exceptional involution
@article{JLT_2006_16_1_JLT_2006_16_1_a2,
     author = {R. Chiriv� and A. Maffei },
     title = {On {Exceptional} {Completions} of {Symmetric} {Varieties}},
     journal = {Journal of Lie theory},
     pages = {39--46},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a2/}
}
TY  - JOUR
AU  - R. Chiriv�
AU  - A. Maffei 
TI  - On Exceptional Completions of Symmetric Varieties
JO  - Journal of Lie theory
PY  - 2006
SP  - 39
EP  - 46
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a2/
ID  - JLT_2006_16_1_JLT_2006_16_1_a2
ER  - 
%0 Journal Article
%A R. Chiriv�
%A A. Maffei 
%T On Exceptional Completions of Symmetric Varieties
%J Journal of Lie theory
%D 2006
%P 39-46
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a2/
%F JLT_2006_16_1_JLT_2006_16_1_a2
R. Chiriv�; A. Maffei . On Exceptional Completions of Symmetric Varieties. Journal of Lie theory, Tome 16 (2006) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a2/