On Exceptional Completions of Symmetric Varieties
Journal of Lie theory, Tome 16 (2006) no. 1, pp. 39-46
Cet article a éte moissonné depuis la source Heldermann Verlag
Let $G$ be a simple group with an exceptional involution $\sigma$ having $H$ as fixed point set. We study the embedding of $G/H$ in the projective space ${\mathbb P}(V)$ for a simple $G$--module $V$ with a line fixed by $H$ but having no nonzero vector fixed by $H$. For a certain class of such modules $V$ we describe the closure of $G/H$ proving in particular that it is a smooth variety.
Classification :
14M17, 14L30
Mots-clés : Complete symmetric variety, exceptional involution
Mots-clés : Complete symmetric variety, exceptional involution
@article{JLT_2006_16_1_JLT_2006_16_1_a2,
author = {R. Chiriv� and A. Maffei },
title = {On {Exceptional} {Completions} of {Symmetric} {Varieties}},
journal = {Journal of Lie theory},
pages = {39--46},
year = {2006},
volume = {16},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a2/}
}
R. Chiriv�; A. Maffei . On Exceptional Completions of Symmetric Varieties. Journal of Lie theory, Tome 16 (2006) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a2/