On the Poisson Bracket on the Free Lie Algebra in two Generators
Journal of Lie theory, Tome 16 (2006) no. 1, pp. 019-037
Voir la notice de l'article provenant de la source Heldermann Verlag
We prove a combinatorial formula for the Poisson bracket of two elements of the free Lie algebra on two generators, which has a particularly nice cocycle form when the two elements are Lie monomials containing only one y. By relating this cocycle form with the period polynomials introduced by Eichler-Shimura and Zagier, we completely describe and classify a set of fundamental relations in Ihara's stable derivation algebra, generalizing the first few cases of these relations which he had observed and computed by hand.
Classification :
17B63, 17B70, 11F11
Mots-clés : Poisson bracket, graded Lie algebras, modular forms
Mots-clés : Poisson bracket, graded Lie algebras, modular forms
@article{JLT_2006_16_1_JLT_2006_16_1_a1,
author = {L. Schneps },
title = {On the {Poisson} {Bracket} on the {Free} {Lie} {Algebra} in two {Generators}},
journal = {Journal of Lie theory},
pages = {019--037},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2006},
url = {http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a1/}
}
L. Schneps . On the Poisson Bracket on the Free Lie Algebra in two Generators. Journal of Lie theory, Tome 16 (2006) no. 1, pp. 019-037. http://geodesic.mathdoc.fr/item/JLT_2006_16_1_JLT_2006_16_1_a1/